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Abstract. Anisoplanatism error for the low-order mode and iis influenge
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the influence of anisoplanatism error on the compensation effectiveness
of an adaptive optics sysiem used as the low-order mode correction. The
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exposure OTF for light beam horizontal aimospheric propagation are
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1 Introduction

Adaptive optics 1s a technique used o measure and correct
the optical wavefront distortions induced by atmospheric
turbulence in real time.' ™~ The principle of adaptive optics
is to improve the image quality of optical and IR astro-
nomical telescopes, to image and track moving space ob-
lects rapidly, and to compensate for laser beam distortion
hrough the turbulent atmosphere. Although the Kolmog-
rov formulation has been widely used to describe atmo-
spheric turbulence, there are some turbulence conditions
‘hat expennmental data do not support. If the turbulence is
nodeled as Kolmogorov and is actually non-Kolmogorov
hrough a portion of the atmosphere, the performance of
hese adaptive opiics systems will be degraded. The Kol-
nogorov model defined by 3-D power spectral density is a
statistical model for the vanations of the index of refraction
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been established at the Yunnan Observatory (see Fig. 1),
The atmospheric turbulent disturbance data were measured
by a Shack-Hartmann wavefront sensor, according to the
expennmental data processing; this proved that the atmo-
spheric turbulence did not obey the Kolmogorov law during
mosi of the observation time. The temporal power spectrum
of the wavefront disturbance in the high-frequency domain
Is proportional to —1.6 to 2 squared which greatly deviates
from the Kolmogorov law of —8/3 squared. Some expeni-
mental data collected on March 23, 2000, are given in
Fig. 2.

Buser made measuremenis of the turbulence power
specira in the Earth’s boundary layer using a three-beam
Mach-Zender optical interferometer.” By having several la-
ser beams propagating at different paths through the turbu-
lence interfere and amnalyzing the interferograms, Buser
found that the Kolmogorov theonzdid nc i
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it sieering mirtor; DM, deformable mimor; and S-H, Shack-

Harimann Sensor.

can be applied without significant error anywhere else -
side the region. Whereas a size that is determined in this
way is almost certain to be small enough, the problem is
that it is an unnecessarily stringent requirement that does
aot account for the actual properties of optical systems. An
jmportant practical consideration in the use of adaptive op-
tics is that the real atmospheric compensation system can
detect and respond to changing conditions only at a finite
rate. A common assumption is that, for atmospheric condi-
tions that are characterized by a temporal spectrum ®(f),
the residual error is given by
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where f;4p 18 the charactenistic frequency of a first-order
comection system.

Greenwood and Fried analyzed bandwidih consider-
ations for atmospheric turbulence. Greenwood’s’ com-
monly used expression for the characteristic frequency that
18 required to achieve a given residual error can be shown
1o be equivalent to including the atmospheric piston within
the aperture as part of the residual error, and its use there-
fore tacitly assumes that the piston error has a degrading
effect on the optical system. Tilt is also included, and if it is

(2)
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corrected by a separate tracking system, its inclusion may
also be undesirable. In the following, we define a model
cormrection factor for the residuoal error that comectly ac-
counts for these effects and that one can therefore use (o
obtain a better estimate for the compensation effect in cor-
recting an adaptive oplics system.

If the incoming wavefront of the beacon and the observ-
ing telescope of an adapuive opiics sysiem are not in the
same direction, a bright star or laser guide star 1s usually
used to provide a reference, and then the positive residual
errors in the system will include anisoplanatism error be-
sides the emrors induced by limiting bandwidth and detect-
ing noise. Among the preceding wavefront errors, the low-
order Zemike modes account for the major parts. For the
Kolmogorov law, the percentage of the Zemike-coefficient
variances of the first-order (tip-tilt) modes and the second-
order (defocus and astigmatism) modes are 86.9 and 6.7%.
respectively. Therefore the compensation of an adaptive op-
tics system is effective even if only the low-order modes of
wavefront disturbance are comrected. For the limitations
of compensation, the effects caused by limiting bandwidth
and detecting noise are detailed (see Ref. 8), and
anisoplanatism-based errors are carefully considered as dis-
cussed here.

Assume an angular interval between an incoming wave-
front of a beacon and the telescope observation target di-
rection is a. and an incoming wavefront ¢(Rx.a) can be
expressed as

d(Rx.a)= 2, aj{(a)Z{(x)
j=2

@

N
=2, afa)Z(x)+ 2 afa)Z(x)
j=2 j=N+

= ¢ (Rx,a)+ ¢y(Rx.a). (3)

where R is the observing system radius (D is its diameier),
x is a 2-D coordinate, Z;(x) are Zemike polynomnals, j is
the modal ordinal number, and @ ;(a) is modal coefficient
of atmospheric turbulence, and
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Fig.3 Modal correction coefficient as funclion of the angular separation for 1000-m horizontal aimo-
spheric propagation: (a) g=44/12; (b) solid line: /=11, dash-dotied line: j=4, the curves in the figure
denoie a, B=40/12; b, f=44M2; and c, B=46/12, respectively.

phase structure functions, respectively. The high-order
modal residual phase structure function is analyzed in Ref.
11, and is not illustrated here. According to Eq. (8), the
low-order modal residual phase structure function can be
derived easily as

DJ.EL{ wna)

 [IW(x)W(x+ul{{d, (Rx.a)— ¢, [R(x+u).a]}’) x

JIW(x)W(x+u)d'x
N
=; eX(a)d,(u). (34)
where d;(u) is a shape function
d(u)= JIW(x)W(x+u)[Z,(x)—Z;(x+u)]* d’x ()

JITW(x)W(x+u) ’x

For low-order modes, the shape function has simple ana-
lytical expressions

ds(u)=d3(u)=8u",

(36)
dy(u)=2ds(u)=2ds(n)=48u*(1—u)>
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According to the preceding derivations and Ref. 12, (he
residual phase structure function and long-exposure OT-
Fafter low-order-mode correction can be expressed, respec-
tively, as =

N
D4 (u.a)=D 4(u) —; (a;(0))d (u)

N
+ gl (gj(a))d;(u),

(37)
nua)=75(u)exp| — %D.ﬁﬂ(ll,ﬂ)], (38)
and
(a;(0))
_(n+1)T'(2n+2—BR)T(B+AR)T (BR)sind] =(B—2)02])
wl (2n+4+ B12)
=
- P_ll f (39)

D 4(u)=|(x,1)— p(x+u1)|>=yg(DIpy)? 2uf 2, (40)

where g is a structure constant, and can be expressed as
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D=0.6m, p;=10cm, g=44/12, and L=1000 m: (a) tip-iilt comection; and (b) tip-tili, defocus, and

astigmatism comection. Here D.L. is diffraction limit.
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rection. Here D.L is diffraction limit.
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:.?I :‘ﬂ:e Kolmogorov spectrum, ¥;;;3=6.88.

5 Numerical Calculation Results for Horizontal
~ Transmission of Light Waves

When light waves propagate along the horizontal atmo-
sphere, C2(z)=C, is a constant, and then the Zernike an-
gular correlation function can be expressed as

(41)
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Figure 3 shows functional relation curves calculated from
different propagating modes and modal correction facior 8
and angular spacing a according to Egs. (11) and (42) for
'ﬂa nial atmospheric transmission of light waves. Figure
3(a) shows the curves of the functional relationship be-
Iween B and a when j is 2, 4, 11, and 16 for Kolmogorov
'F rbulence at f=44/12. and Fig. 3(b) shows the curves of
B and a for j equals to 4 (dash-dotted line) and 11 (solid
line) with different values of B (40/12, 44/12, and 46/12).
- Figures 4, 5, and 6 are long-exposure OTF curves of
fferent a, B. and p, values obtained after the low-order
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Fig- 5 MmermmmwMMMﬁﬁ;P=ﬂ:ﬁm. g
=10cm, a=10", and L=1000 m: (a) tip-iilt corection and (b) tip-iilt, defocus, and astigmaiism cor-

mission system. Note that the overcorreciion phenomenon
will occur at the high-frequency band of the long-exposure
OTF curve after low-order-mode correction because we did
not consider modal coupling. Reference 13 once posed this
phenomenon. Modal coupling has litile influence on the
long-exposure OTF curve at a lower frequency band. It
influences only the high-frequency band of the long-
exposure OTF curve and has little influence for calculation
of a long-exposure image Strehl ratio (SR) and full width at
half maximum (FWHM). To eliminate the overcorrection
phenomenon, we used a method in this paper is similar to
that used in Ref. 14. According to Eqgs. (36), (37), and (40),
the residual phase structure function afier correction for
tip-tilt, defocus, and astigmatism can be obtained as

Dy (w.a)=yp(DIpo)® *uf 2(1-Au""F), (43)
D4 (wa)=yg(DIpy)’ uf >
X[1—Au*"P—Bu* B(1—u)*], (44)
and
A=16[(a3(0))—(=3(a)}V g.
(45)

B=96[{a3(0)) —(e3(a)) )/ v;-

When A> 1. we selecti A= 1, and when B> 1, we selection
B=1. Then the overcormrection phenomenon can be elimi-

nated.
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Fig. 6 Long-exposure OTF after low-order-mode correction for different values of pg: D=06m, B
—44/12, 2=50", and L=1000 m: (a) tip-iilt comrection and (b) Tip-iilt, defocus, and asligmaiism cor-
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