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A two-particle cluster variation theory is presented here to treat the inhomogeneous
nematic phase. This theory is used to study nematic liquid crystal films. The internal
energy per molecule in each layer is calculated and results are in agreement with those
of the simulation. It is found that within the two-particle cluster theory, the surface
excess free energy in both the nematic phase and the isotropic phase increases with the
temperature. This behavior is in contradiction with that of the simulation and the mean
field theory.

1. Introduction

The importance of short range correlations between molecules in the homogeneous
nematic phase of liquid crystals has been demonstrated by experimental data and
computer simulations.! There have been a few forms of molecular theories published
on the subject of the short range correlations, including the Bethe method,? the
constant coupling theory® and our functional variation theory based on the cell
mode.* Compared with the simple mean field theory, all these theories lead to
improved values for all quantities — characteristic for the nematic — isotropic
phase transition within the Maier-Saupe model.5

Recently, M. M. Telo da Gama et al.% investigated nematic liquid crystal films
by a molecular theory within the Bethe approximation. More specifically, they
considered a slab of finite width, having parallel surfaces at the top and bottom,
and being infinite extent in the other two directions. This confined system, which
was first studied by G. R. Luckhurst et al. through the Monte Carlo method and
the mean field theory,” is especially interesting because short range correlations
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appearing in bulk make it difficult to understand the effects of finite system size.
Calculations were carried out in Ref. 6, with attention focused on the shift of the
transition temperatures, averaged energies per particle, order parameter profiles
and absorption for a range of slab widths. However, the temperature dependence
of the surface excess free energy, which relates to the surface tension when the slab
width tends to infinite, was not given.

In this letter, we present a two-particle cluster variation theory which can be
used to treat the inhomogeneous nematic phase and include some effects of the
local short range correlations between molecules. As an example, we also study the
nematic films described above. The numerical results are in accordance with those
of the Bethe approximation. But it appears that the temperature dependence of
the surface excess free energy is in a sense unexpected.

2. Theory

Let us consider a system of N liquid crystal molecules. The direction of the long
axis of a molecule is described by the spherical coordinates 6, ¢. Denote 2 = (8, ¢).
We define one body and two body distribution functions glf1(Q;) and g[i5](€:, @),
where superscript [i] refers to the definite molecule ¢ and [i5] to the definite molecules
i and j. It is implied that molecules may have different distributions when the
system is inhomogeneous. The distribution functions satisfy the normalization con-
dition and the consistency condition

/ d(Q)dR =1, (1)
/ g5, 90,)d0; = g(), @

where dQ? = sinfdfd¢$ and the angular integration is taken over the whole solid
angle. Within the two particle cluster approximation, the free energy of the system
is expressed as*8

Llil
ZZ//U?V(Q“ Q,) +1n gt(Q;, Q)

— (1 - 1/2) In ¢1(0:)gb(0)]g™ (9, 9;)d€dR; , 3)

where 3 = 1/kT; the first summation is taken over all molecules of the system and
the second over 2! neighbors of the molecule i. The orientational pair potential
V (4, Q;) is taken as'™*

V(Qi, Q]) = JPZ(COSO,'J') . (4)

Here J is aa positive constant reflecting the strength of the interaction, 6;; is
the angle between tl‘le long axes of the neighboring molecules ¢ and j, and P, is
the second order Legendre polynomial. The equilibrium distribution results from
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the minimization of the free energy with respect to the variations of the distribution
functions. So we have

il

STV (R, ) +1n g(Q;, ;) — (1 - 1/2) In gHl(Qu)gb(@))] - AP =0, (5)

=1

where ALl is a variational constant.

For liquid crystal films, following Refs. 6 and 7, the molecules interacting with
the pair potential (4) are located at the sites of a simple cubic lattice. The surfaces of
the film are assumed to be normal to the z-axis and they remove the homogeneity
in the z-direction but not in the XY-plane. We label the layers parallel to the
surfaces with_the letter m, with m = 1 and m = n denote the two surface layers.
The one-body distribution function is localized according to the layer in which the
molecule is located; i.e. we have gl?(Q;) = g™ (Q;), if the molecule i is in the mth

layer. From Eqgs. (1), (2) and (5), we obtain a set of equations for the one body
distribution functions,

4
™ (@) = A { [ @1+ expl-pvian, 92)]d92}
1—6m1
8 { / [ D ( Q)] /=™ exp[-BV (, 92)]dm}

1=6mn
x { [1st @ expl-pv e, 92)]d92} ,
| (m=1,2,...,n) (6)

where 2(™) is equal to 5 for m = 1, n, otherwise it is equal to 6; A(™)s are the
constants determined by Eq. (1).

In order to solve this set of equations, we choose a representation for g™(Q);
_ i.e. we expand In g{"™) () in Legendre polynomials.?* For the simple pair potential
(4), we retain only the leading term of the expansion and write*?

g™ () = exp[8Jo "™ Pa(cos 6)]/2{™ , (7)
2™ = / exp[8Jo™ Py(cos 8)]dQ, (8)
where 6 is the angle of the molecule with respect to the director. o(™)’s are functions

of temperature and are determined by requiring that this set of equations will give
the orientational order parameters

(P{™) = / Py(cos) ¢™ ()2, )

consistently. It should be noted that o{™) = 0 is a set of solutions for any tempera-
ture, it corresponds to the isotropic phase. When two sets of solutions appear, the
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one with lower free energy is more stable. The free energy can be written as

BF(n) =Y BF(™ = %L > a1~ 172y 2

m=1 m=1
+ (1= bm1)(1 = 1/26™) In 2™
+ (1= bma)(1 = 1/2™) 0 Z{™*D —1n 20, (10)

where L = N/n is the number of molecules in each layer and

4
Z6m = / { / exp|BJ(1 — 1/20™)a ™) Py(cos 61) + BJ Py (cos 012)]d92}
1-6m1
X {/exp[ﬁ.](l - l/z(m))d(m_l)Pg(COS o) + 3JP2(COS€12)]sz}

x { / exp[BJ(1 = 1/20™)a™+1) Py (cos By) + B Py(cos 012)d§22}1—6md01.
(11)

The internal energy per molecule associated with each layer m is given by
(™) = 0BF™/1)/08. (12)

Equation (12) gives half the averages of four pairs of interactions within layer m,
one pair of interaction in adjacent layers m and m — 1 (with m # 1), and one pair
of interaction in adjacent layers m and m +1 (with m # n), which is expected from
thermodynamics.

In the absence of boundaries, Egs. (6) and (10) reduce to those for the bulk
system in the two-particle cluster variation theory,*8 i.e.

o(61) = A{ [lo@P- expl-gv (o, ulana} . a9
BF, = %N[(z —1)In Z, —In 2] (14)

where ‘
Z = / exp|8J0 Py(cos 0)]dS2, (15)

2
Zy = / {/exp[ﬂJ(l —1/z)o Pa(cosb,) +ﬂJP2(cosl912)]dQ2} dQ, . (16)

Those equations give also the results which is identical to the constant coupling
theory.3?



A Study of Two Particle Cluster Approzimation for ... 1365
The surface excess free energy is defined by,%7
Fex(n) = F(n) — F(b). an

Note that 27 = limy,_, o [Fex(n)/L] defines the surface tension + for both the nematic
phase and the isotropic phase.

3. Numerical Results and Discussion

We have made numerical calculations for the film composed of 10 molecular lay-
ers. The theory predicts a first order nematic-isotropic phase transition at ¢, =
1.1373 (t = kT/J). - For comparison, the value predicted by the Monte Carlo
simulation” is 1.095 and that by the mean field theory is 1.2990. The temperature
dependence of the internal energy per molecule (u(™)) in each layer is calculated
and the results are shown in Fig. 1. Because of the short range correlations con-
cerned, (u(™)) given by Eq. (12) is not zero even in the isotropic phase, which is
in agreement with that of the Monte Carlo simulation,” in addition, the curves in
the isotropic phase for m = 2, 3, 4, 5 are the same in accordance with the conclu-
sion of the Bethe approximation.® Order parameter profile and the other quantities
including their variations with the slab width, about which our theory reaches a
consensus with the Bethe approximation,® will be published elsewhere.
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Fig. 1. Temperature dependence of the internal energy per molecule for the layers.

Now we devote our attention to the surface excess free energy given by Eq. (17).
In Fig. 2, we give the result as a function of the scaled temperature for the slab
thickness n = 10, a case which has been studied by using the simulation and the
mean field theory.” We note that the excess free energy in both the nematic phase
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Fex/ (LJ)

Fig. 2. Temperature dependence of the surface excess free energy. (A) For the nematic phase;
(B) For the isotropic phase and it has been extended to the range of t < tc; (C) The difference
between A and B; (D) Predicted by the mean field theory for the nema.tlc phase and it is zero for
the isotropic phase.

Fo/(NJ)

Fig. 3. Temperature dependence of the bulk free energy. (A) For the nematic phase; (B) For the
isotropic phase and it has been extended to the range of t < tc; (C) The difference between A and
B; (D) Predicted by the mean field theory for the nematic phase and it has been taken zero for
the isotropic phase.
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and the isotropic phase increases with the temperature. This behavior and the
specific values are in contradiction with the results of the simulation and those of
the mean field theory.” The difference between the excess free energy in the nematic
phase and that in the isotropic phase seems, however, normal and it is 0.082 (LJ)
at the phase transition. The value predicted by the simulation is 0.022 (LJ) and
that by the mean field theory is 0.106 (LJ).

It is profitable to recall the bulk free energy in the two-particle cluster theory of
nematics. The results calculated from Eq. (14) are shown in Fig. 3. We can see that
the temperature variation of the bulk free energy in both the nematic phase and the
isotropic phase is abnormal (only the slope of the curves is definite and two curves
can move along vertical direction simultaneously), but the difference between them
is normal. As a matter of fact, this characteristics is universal in the molecular
theories of nematics which takes account of two-body correlations. When we treat
the bulk system, we use the free energy to determine the phase transition and the
temperature dependence of it is unimportant at all. However, when we describe the
films, the surface excess free energy relates to the surface tension, so both its value
and temperature dependence are important. We believe that the abnormal behavior
of the bulk free energy in the two-particle cluster theory is the latent reason why the
theory fails to predict the surface excess free energy. The results of this letter give
a limit to the application of the two-particle cluster theory and the other equivalent
theory (the constant coupling theory, etc.) when these theories are used to treat
the films and to study the surface properties of nematic liquid crystals.
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