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A generalized form of anisotropic surface energy for the description of twisted chiral ne-
matic samples with side-chain polymeric layers is proposed, and the anchoring properties
of such samples are analyzed, using the equivalent anchoring energy method proposed
by Alexe-Ionescu et al. Our results give a more general expression for the equivalent
anchoring energy, the new variables included in the expression are determined by the
anchoring of the side chains and by the sterical interaction of the side chains with the
nematic liquid crystals (NLCs). In addition, the coupling of the polymer side chains with
the surface, reduces the equivalent anchoring energy as well as the threshold field.

Keywords: Twisted chiral nematic liquid crystal cell; weak anchoring; side-chain poly-
mer; threshold field; surface anchoring.

1. Introduction

In liquid crystals (LCs), surface effects have been studied mainly for nematic

phases.1 The translational symmetry and often also the rotational symmetry of

the nematic phase are broken when it encounters an interface.2 In the absence of

an external electric or magnetic field (field free condition), the alignment of nematic

liquid crystals (NLCs) is entirely dictated by the surface forces, which depend on

the presence of surface layers.3 In the special case where the surface layer is an

ordered medium particular effects are expected, because in addition to the physic-

ochemical interactions, the steric interaction also has to be taken into account.4–6

∗Corresponding author.
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If the surface layer is polymeric film, the LC molecules are aligned by the sterical

interactions between the polymer molecules and the LC molecules.7

For a NLC sample with weak anchoring surfaces, the phenomenological expres-

sion for the surface energy density proposed by Rapini–Papoular (RP),8 which de-

scribes the anisotropic interaction between the nematic director and the substrate,

is expressed by:

fs = −
1

2
α(n · e)2 , (1)

where e is the easy direction, n is the NLC director at the surface, and the anchoring

strength parameter α measures the ability of the director to deviate from the easy

direction. The RP formula only includes the lowest terms of the lowest order, while

it can describe many surface effects on the phenomenological level successfully. With

Eq. (1) Sugimura et al. have discussed the threshold and the saturation fields for

twisted chiral nematic (TCN) layers with weak boundary coupling.9,10

Recently, Alexe-Ionescu et al.
11 have investigated the anchoring of a side-chain

polymer for a homogeneous NLC sample. These nanostructured polymeric layers

seem very promising for application in display technology because they allow a

continuous control of the pretilt angle of NLCs.12 They assumed an expression of

the anisotropic surface energy for this special case where the aligning layer is a

side-chain polymer and performed analysis in the presence and in the absence of

external electric field. By comparing the results of standard analysis with the special

case, they found that the equivalent anchoring energy depends on the coupling of

the nematic with the polymer side groups as well as on the coupling of the polymer

side groups with the surface. However, the anisotropic surface energy they proposed

is only suitable for untwisted NLC samples.

In this paper, we extend the anisotropic surface energy proposed in Ref. 11 to

a more general form, for the description of a special TCN sample with side-chain

polymeric layers, as seen in Appendix A, and then we investigate the anchoring

properties of a side-chain polymer for a TCN sample phenomenologically, using the

equivalent anchoring energy method proposed by Alexe-Ionescu et al.
11

2. Theoretical Basis

In the surface layer, there exist an anisotropic surface field characterized by az-

imuthal anchoring and polar anchoring. Experimentally determined values of az-

imuthal anchoring energy (∼ 10−5 J/m2) is usually an order of magnitude lower

than polar anchoring energy (∼10−4 J/m2),13–15 so we assume that the coupling of

the nematic with the polymer side groups is symmetric, while the coupling of the

polymer side groups with the surface is anisotropic. In this assumption, Appendix

A gives the anisotropic surface energy of TCN samples with side-chain polymer

layers as:

fs = −
1

2
α(n ·w)2 +

1

2
βa(w · ey)

2 +
1

2
βp(w · ez)

2 , (2)
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where w is the direction of the polymer side groups. We suppose that in the ab-

sence of any imposed deformation the polymer side group is parallel to the x-axis.

The parameters βa, βp are azimuthal and polar anchoring strength cofficients con-

nected with the restoring torque of elastic origin acting on the lateral group, re-

spectively. Assuming mesogenic side groups, the parameter α takes into account

the tendency of the nematic molecules to be parallel, for sterical reasons, to the

side-chain groups. Here we do not take into account the presence of aliphatic chains,

imposing homeotropic alignment, as mentioned in Ref. 11.

We consider a TCN cell of thickness d located between the two planes z = ±d/2

and with mirror symmetry with respect to the middle plane z = 0, for which,

α = α− = α+, βa = β−

a = β+
a , βp = β−

p = β+
p , and then for any φt describing the

total twist angle of the TCN, we have φ(−z) = φt − φ(z) and θ(−z) = θ(z). The

surface tilt angles are taken to be the same at both surfaces, θ0 = θ(−d/2) = θ(d/2).

The direction w of the polymer side groups at z = −d/2 and the director n at the

z layer can be expressed as:

w = (cos θw cosφw, cos θw sinφw, sin θw) , (3)

n = (cos θ cosφ, cos θ sinφ, sin θ) , (4)

where θw, φw are the tilt angle and azimuthal angle of the polymer side groups w,

and θ = θ(z), φ = φ(z) are the tilt angle and azimuthal angle of the director n.

According to Eq. (2), the surface energy density at z = −d/2 is given by:

f−

s = −
1

2
α[cos θ0 cosφ0 cos θw cosφw + cos θ0 sinφ0 cos θw sinφw + sin θ0 sin θw]

2

+
1

2
βa cos

2 θw sin2 φw +
1

2
βp sin

2 θw , (5)

Fig. 1. The geometry of the twisted chiral nematic cell located between the two paltes z = ±d/2.
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where φ0 = φ(−d/2). We assume that the dielectric anisotropy of the NLC is

positive (εa > 0), and the applied electric field is parallel to the z-axis,E = (0, 0, E),

then the free energy density in the bulk up to the second order derivative of the

director is given by:

fb =
1

2
f(θ)(dθ/dz)2 +

1

2
h(θ)(dφ/dz)2 + k2 cos

2 θ(dφ/dz)

+
k22

2K22

−
1

2
εaE

2 sin2 θ , (6)

where

f(θ) = K11 cos
2 θ +K33 sin

2 θ ,

f(θ) = cos2 θ(K22 cos
2 θ +K33 sin

2 θ) ,

k2 = −2πK22/p0 ,

(7)

and K11, K22, K33 are the splay, twist and bend elastic constants of the NLC,

respectively, p0 denotes the pitch of the material induced by a chiral dopant. The

surface-like term Ks ≡ K22 +K24 is omitted here as it does not contribute to the

free energy when n depends just on a single Cartesian coordinate.

The total free energy per unit area of the cell is given by:

F =

∫ d/2

−d/2

fbdz + 2f−

s −∆E2 sin2 θw , (8)

where ∆ = εapℓ, εap being the dielectric anisotropy of the polymer side groups, and

ℓ the length of the chain connecting the lateral group to the surface. ∆E2 sin2 θw
represents the interaction energy between the polymer side group and the electric

field. Minimization of the free energy in the bulk yields the stable director config-

uration for any given field. The variational calculation16 of Eq. (6) yields

f(θ)(d2θ/dz2) +
1

2
fθ(dθ/dz)

2
−

1

2
hθ(dφ/dz)

2 + 2k2 sin θ cos θ(dφ/dz)

+ εaE
2 sin θ cos θ = 0 , (9)

h(θ)(dφ/dz) + k2 cos
2 θ = C , (10)

where C is a constant of integration, fθ = df/dθ, hθ = dh/dθ.

3. Fréedericksz Transition

Threshold electric field Ec means the value on which the director of LCs starts to

generate a deformation. We suppose that θw = 0 for E < Ec. In the vicinity of the

threshold field, the deformations of nematic and side groups are very small, that

is for E ∼ Ec, θ ∼ 0 and θw ∼ 0. Considering this limit and neglecting the higher
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ranks, Eq. (7) gives f(θ) ∼ K11 + (K33 − K11)θ
2, h(θ) ∼ K22 + (K33 − 2K22)θ

2,

fθ ∼ 2(K33 −K11)θ and hθ ∼ 2(K33 − 2K22)θ, and Eqs. (8)–(10) change to

F =

∫ d/2

−d/2

[

1

2
K11(dθ/dz)

2 +
1

2
[K22 + (K33 − 2K22)θ

2](dφ/dz)2

+ k2(dφ/dz) +
k22

2K22

−
1

2
εaE

2θ

]

dz

+ βa − βa cos
2 φw + [βa cos

2 φw − βa + βp −∆E2 + α cos2(φ0 − φw)]θ
2
w

+αθ20 cos
2(φ0 − φw)− 2αθ0θw cos(φ0 − φw)− α cos2(φ0 − φw) , (11)

K11(d
2θ/dz2) + (2K22 −K33)θ(dφ/dz)

2 + 2k2θ(dφ/dz) + εaE
2θ = 0 , (12)

K22(dφ/dz) + k2 = C . (13)

According to Eq. (37) in Ref. 10, we have

C − k2 = K22(φt − 2φ0)/d . (14)

Equations (13) and (14) lead to the expression of dφ/dz, namely

dφ/dz = (φt − 2φ0)/d . (15)

Substituting Eq. (15) into Eq. (12) and defining the electric coherence length

ξ =

[

K11

(2K22 −K33)[(φt − 2φ0)/d]2 + 2k2(φt − 2φ0)/d+ εaE2

]1/2

, (16)

Eq. (12) can be rewritten as:

ξ2(d2θ/dz2) + θ = 0 . (17)

Taking into account the symmetry condition θ(−z) = θ(z), from Eq. (17) we obtain

θ = A cos(z/ξ) . (18)

Substituting Eqs. (15) and (18) into F given by Eq. (11), we get

F = −
1

2

K11

ξ
sin(d/ξ)A2 +

1

2
K22(φt − 2φ0)

2/d+ k2(φt − 2φ0) +
k22

2K22

d

+ βa − βa cos
2 φw + [βa cos

2 φw − βa + βp −∆E2 + α cos2(φ0 − φw)]θ
2
w

+αA2 cos2(d/2ξ) cos2(φ0 − φw)− 2αA cos(d/2ξ)θw cos(φ0 − φw)

−α cos2(φ0 − φw) . (19)

The stable state demands

∂F

∂A
=

∂F

∂θw
=

∂F

∂φ0

=
∂F

∂φw
= 0 . (20)
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From Eq. (19), the relations ∂F/∂A = ∂F/∂θw = 0 give
[

−
K11

ξ
sin(d/ξ) + 2α cos2(d/2ξ) cos2(φ0 − φw)

]

A

− 2α cos(d/2ξ) cos(φ0 − φw)θw = 0 , (21)

[βa cos
2 φw − βa + βp −∆E2 + α cos2(φ0 − φw)]θw

−α cos(d/2ξ) cos(φ0 − φw)A = 0 . (22)

Then the relations ∂F/∂φ0 = ∂F/∂φw = 0 give

−
K22

d
(φt − 2φ0)− k2 + α cos(φ0 − φw) sin(φ0 − φw) = 0 , (23)

βa cosφw sinφw − α cos(φ0 − φw) sin(φ0 − φw) = 0 . (24)

Equations (23) and (24) show that, for certain values of φt, the solutions of φ0

and φw can be determined completely by α and βa, and the details is given in

Appendix B. Equations (21) and (22) form a homogeneous system. The solution

θw = A = 0, corresponding to the undistorted state, is stable if

∂2F

∂A2
> 0,

∂2F

∂A2

∂2F

∂θ2w
−

∂2F

∂A∂θw
> 0 ,

which gives

−
K11

ξ
sin(d/ξ) + 2α cos2(d/2ξ) cos2(φ0 − φw) > 0 , (25)

βa cos
2 φwα cos2(φ0 − φw)− [βa cos

2 φw − βa + βp −∆E2 + α cos2(φ0 − φw)]

×
K11

ξ
tan(d/2ξ)− α2 cos2(φ0 − φw) sin

2(φ0 − φw) > 0 . (26)

Since ℓ is a molecular dimension ∆E2 ≪ βα and (φ0 − φw) is very small, Eqs. (25)

and (26) can be rewritten as:

tan(d/2ξ) < ξα cos2(φ0 − φw)/K11 , (27)

tan(d/2ξ) < ξwe/K11 , (28)

respectively, where

we =
α cos2(φ0 − φw)βa cos

2 φw

α cos2(φ0 − φw) + βa cos2 φw + βp − βa
. (29)

As has been pointed out above, the values of φ0 and φw in Eq. (29) can be deter-

mined from Eqs. (23) and (24). The more restrictive inequality between (27) and

(28) is the second one. Consequently the threshold we are seeking is given by:

tan(d/2ξc) = ξcwe/K11 . (30)
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According to Eq. (16), the threshold electric field Ec is given by:

Ec =

[

K11d
2/ξ2c − (2K22 −K33)(φt − 2φ0)

2
− 2k2(φt − 2φ0)d

εad2

]1/2

. (31)

where ξc are the solutions of the transcendental equation (30).

To see the effect of the coupling of the polymer side chains with the surface, we

check our generalized side-chain model in the assumption of βa = βp = β.

Firstly, we discuss our result in comparison with that of Sugimura et al.
10 by

using numerical calculations. We introduce the similar dimensionless parameter

λ =
πK22

αd
, (32)

and the reduced electric field u = Ec/E0 to those in Ref. 10, where

E0 =
π

d

√

K11/εa (33)

is the threshold electric field for an untwisted nematic slab (φt = 0) with strong

anchoring boundary (λ = 0, i.e., α → ∞). Then we plot the λ dependence of the

reduced electric field u for various β/α in Fig. 2, which shows our present result

and that reported in Ref. 10 for a twisted nematic cell (φt = 90◦, d/p0 = 0) with

the same material parameters as those used in Ref. 10, i.e., K33/K11 = 1.5 and

K22/K11 = 0.6. It is clear that the coupling of the side chains with the surface

reduces the threshold field. In addition, as the anchoring parameter β increasing,

our result tends to that of Sugimura et al. in Ref. 10, which is reasonable.

Secondly, in the assumption of βa = βp = β, Eq. (29) reduces to

we =
α cos2(φ0 − φw)β cos2 φw

α cos2(φ0 − φw) + β cos2 φw
. (34)

It follows that

1

we
=

1

α cos2(φ0 − φw)
+

1

β cos2 φw
. (35)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

β/α = 0.5

β/α = 1.0

β/α = 1.5

Sugimura et al.(Ref. [10])

λ

u

Fig. 2. The λ dependence of the reduced electric field u for twisted nematic cells. We show the
present theoretical result and that reported in Ref. 10.
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From Eq. (35) we find that if β → ∞, i.e., the side groups are fixed and φw = 0,

we → α cos2 φ0, as expected. Moreover, Eq. (35) also gives that the equivalent

anchoring energy we is smaller than α and β. Consequently, the coupling of the

side chains with the surface reduces the equivalent anchoring energy.

In addition, by comparing Eq. (34) or (35) with the equivalent anchoring energy

given by Alexe-Ionescu et al.,11 i.e., we = αβ/(α + β), we conclude that, in the

linear approximation, we get a more general expression for the equivalent anchoring

energy, and the new variables φw and φ0 included in our generalized expression are

determined completely by the anchoring parameters α and β for a certain φt.

As has mentioned above, in the surface layer, the azimuthal anchoring energy is

usually an order of magnitude lower than polar anchoring energy, and thus the con-

dition βa = βp = β is seldom fulfilled. The discussion above only gives a qualitative

analysis of the effect of the coupling of the polymer side chains with the surface.

4. Conclusions

In this work, extending the work of Alexe-Ionescu et al., we have proposed a gener-

alized form of the anisotropic surface energy [see Eq. (2)] and studied the anchoring

properties of a side-chain polymer for filed-controlled TCN samples. Using the treat-

ment method of Alexe-Ionescu et al., we considered the Fréedericksz transition and

obtained a more general expression for the equivalent anchoring energy we [Eq. (34)

or (35)]. We show that the azimuthal angles of side chains and nematic director n

at the surface, i.e., φw and φ0, which have important contribution to the equivalent

anchoring energy we, are determined completely by the anchoring parameters α

and β for a certain φt. In addition, the coupling of the side chains with the surface

reduces the equivalent anchoring energy as well as the threshold field.
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Appendix A. Surface Anchoring Energy of a Side-Chain Polymer

Layer

For the case we considered in the text, where the aligning layer is a side-chain poly-

mer, the anisotropic part of the surface anchoring energy depends on the coupling

of the nematic with the polymer side groups, as well as on the coupling of the

polymer side groups with the surface.

Considering the symmetry of the nematic director n with respect to the polymer

side group w, and assuming that the corresponding anchoring strength coefficient
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is α, the finite anchoring energy per unit area for the director orientation can be

expressed as:

fs1 = −
1

2
α(n ·w)2 . (A.1)

Considering the anisotropy of the polymer side group with respect to the surface,

we introduce two parameters βp, βa describing the polar and azimuthal anchoring

strength coefficients respectively, and suppose that in the absence of any imposed

deformation, the polymer side group is parallel to the x-axis. Then the finite an-

choring energy per unit area describing the elastic restoring torque acting on the

polymer side groups is

fs2 =
1

2
βa(w · ey)

2 +
1

2
βp(w · ez)

2 . (A.2)

Now the total surface energy density of a side-chain polymer layer is

fs = −
1

2
α(n ·w)2 +

1

2
βa(w · ey)

2 +
1

2
βp(w · ez)

2 . (A.3)

Appendix B. The Detailed Solutions of φ
0
and φ

w

According to Eqs. (23) and (24) in the text, we have

K22

d
(φt − 2φ0) + k2 = βa cosφw sinφw , (B.1)

βa cosφw sinφw = α cos(φ0 − φw) sin(φ0 − φw) . (B.2)

Equations (B.1) and (B.2) give

φ0 =
1

2
φt +

k2d

2K22

−
βad cosφw sinφw

2K22

, (B.3)

φ0 = φw +
1

2
arcsin

(

2βa cosφw sinφw

α

)

, (B.4)

respectively. Elimination of φ0 from Eqs. (B.3) and (B.4) gives

φt +
k2d

K22

= 2φw + arcsin

(

2βa cosφw sinφw

α

)

+
βad cosφw sinφw

K22

. (B.5)

Equation (B.5) shows that for a certain φt, the solution of φw can be determined

by the values of α and βa, and then φ0 is obtained by either of Eq. (B.3) or (B.4).

That means that for a certain φt, using Eqs. (23) and (24) in the text, the solutions

of φw and φ0 can be determined completely by the values of α andβa.
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