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Fig.2 The free — body diagram of the vehicle in flight
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Characterization of a multi rotor micro air vehicle
and simulation of airfoil aerodynamics at low Reynolds-number

BAI Yue' CAO Ping® GAO Qing+ia' SUN Qiang'

(1. State Key Laboratory of Applied Optics Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences
Changchun 130033 China; 2. School of Sciences Changchun Institute of Technology Changchun 130012 China)

Abstract: In this paper a concept of multi rotor micro air vehicle ( MAV)  which can motion to any direction e—

ven rolling on the ground was presented. Three configurations of this vehicle were analyzed and the equations of mo—

tion were built. The vehicle has smaller sizes of shape lighter weight and lower flight speed. As a result Reynolds

number of airfoil for this vehicle based on rotor velocity rotor chord length and flight mode of the vehicle was varied

from 1 x10* to 12. 8 x 10*. A fairly conventional low Reynolds number airfoil section ( Eppler 387) was chosen for the

analysis. Aerodynamic characteristics of airfoil at low Reynolds number were investigated in order to better understand

the behavior of airfoils in different flight regime using conformal hybrid meshes. The lift coefficient drag coefficient

and ratio of lift coefficient to drag coefficient at Reynolds number of 1 x 10* 2 x10* 3 x10* and 6 x 10* respective—

ly for a series of attack angle were obtained no study at Reynolds number less than 6 x 10* before. The results of

simulation were compared to the results of experiment and the agreement of trend of both is very well.
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