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ABSTRACT In this work, we report on the fabrication and char-
acteristics of light-emitting diodes based on p-GaN/i-ZnO/n-
ZnO heterojunction. A 30 nm i-ZnO layer was grown on
p-GaN by rf reactive magnetron sputtering, then a n-ZnO
was deposited by the electron beam evaporation technique.
The current-voltage characteristic of the obtained p-i-n het-
erojunction exhibited a diode-like rectifying behavior. Be-
cause the electrons from n-ZnO and the holes from p-GaN
could be injected into a i-ZnO layer with a relatively low
carrier concentration and mobility, the radiative recombina-
tion was mainly confined in i-ZnO region. As a result, an
ultraviolet electro-emission at 3.21 eV, related to ZnO exciton
recombination, was observed in a room-temperature electro-
luminescence spectrum of p-i-n heterojunction under forward
bias.

PACS 78.60.Fi; 73.40.Lq; 85.60.Jb

1 Introduction

ZnO, a wide bandgap (3.37 eV) semiconductor
with a large exciton binding energy (60 meV), is a promis-
ing material for optoelectronic applications [1–6]. Recently,
Tsukazaki et al. [4] reported the significant advance in light-
emitting diodes (LEDs) based on ZnO homojunction, which
has led ZnO to gain much more attention for applications in
short-wavelength LEDs and laser diodes suitable for high-
temperature operation. However, until now, the lack of reli-
able, high-quality, p-type ZnO has hampered the development
of ZnO homostructural ultraviolet (UV) LEDs, though much
progress has been made in this area [7–9]. Thereby, construct-
ing heterojunction LEDs with ZnO active regions becomes
another attractive choice.

ZnO and GaN are similar in many of their physical prop-
erties. For example, ZnO and GaN both have a wurtzite crys-
tal structure, almost the same in-plane lattice parameter (the
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lattice mismatch ∼1.8%), and room-temperature bandgaps
of 3.37 and 3.4 eV, respectively. Currently, the high-quality
p-type GaN (p-GaN) has been successfully obtained, even
commercially supplied. Based on their similar material prop-
erties and the relative availability of p-GaN, recently, several
groups have fabricated the heterojunction LEDs by combining
p-GaN with n-type ZnO (n-ZnO) [10, 11]. These GaN/ZnO
LEDs exhibit the improved carriers confinement compared
to homojunction, which leads to higher recombination and
improved device efficiency. However, due to relatively lower
carrier concentration and mobility of p-GaN compared with
those of n-ZnO, the blue-violet electroluminescence (EL) of
those reported GaN/ZnO heterojunctions usually originates
from GaN layer, while UV EL related to ZnO exciton recom-
bination is not observed.

In this work, a thin semi-insulating ZnO (i-ZnO) layer
with high resistivity of ∼1.3 k� cm was inserted between the
p-GaN and n-ZnO layer, to form p-i-n heterojunction, which
confined parts of carriers to recombine in i-ZnO region. As
a result, 3.21 eV (386 nm) EL from this p-i-n heterojunction,
related to ZnO exciton recombination, was observed at room-
temperature (RT).

2 Experiments

Figure 1 shows a schematic diagram of p-GaN/
i-ZnO/n-ZnO heterojunction LEDs. Mg doped p-GaN epitax-
ial film, which was grown on Al2O3 (0001) by metal organic
chemical vapor deposition, was commercially purchased and
served as substrate. A thin i-ZnO layer with the thickness of
∼30 nm was deposited on p-GaN by rf reactive magnetron
sputtering. An ultrapure metallic zinc disk was used as the
sputtering target. Ultrapure Ar and O2 gas mixtures with the
flow-rate ratio of 2:1 were introduced into the growth cham-
ber. The substrate temperature and rf power density were con-
trolled at 300 ◦C and 2.0 W/cm2 during film deposition, re-
spectively. The working pressure was kept at 1.0 Pa. Next, an
n-ZnO layer was grown by electron beam evaporating ZnO ce-
ramic target. Higher evaporation power density (195 W/cm2)
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FIGURE 1 Schematic diagram of p-GaN/i-ZnO/n-ZnO heterojunction
LEDs

and substrate temperature (500 ◦C) were used for obtaining
n-ZnO with higher electron concentration. Moreover, for
comparison, GaN/ZnO p-n heterojunction was also fabri-
cated under the same conditions. Ohmic contact to p-GaN
was made by thermally evaporating Ni/Au. Indium elec-
trode was soldered on n-ZnO layer at 300 ◦C in vacuum.
Electrical parameters of individual layers and current-voltage
(I–V) characteristic of heterojunction were measured by us-
ing the Hall system (Model 7707, LakeShore Co.). Good
ohmic contact was verified before measurement. RT EL spec-
tra were collected from the edge of top electrode under for-
ward bias by using fluorescence spectrometer (LS-55, Perkin
Elmer Co.). Photoluminescence (PL) measurements were
conducted with micro-Raman spectrometer (Jobin Yvon Co.).
The 325 nm line of a He-Cd laser was used as the excitation
source.

3 Results and discussion

The electrical parameters of p-GaN, i- and n-ZnO
were listed in Table 1. The nonstochiometric undoped ZnO
films usually exhibit n-type conductivity due to the ‘native
donor’ (oxygen vacancies and zinc interstitials). Hence, the
low-resistive films can be obtained by controlling these na-
tive defects. During n-ZnO deposition, high-energy electrons
beam can break some of the Zn-O bonds, and the dissocia-
tive Zn2+ ions are easier to combine with the substrate than
O2− ions do. These resulted in the formation of Zn-rich film,
thus, the higher electron concentration (7.53 × 1018 cm−3)
of n-ZnO was attributed to the generation of oxygen va-
cancies and zinc interstitials. However, i-ZnO was grown in
an oxygen-rich environment, which effectively decreased the
‘native donor’, thus, resulting in low carrier concentration. As

Samples ρ (� cm) µ (cm2 V−1 s−1) N (cm−3)

p-GaN 1.63 5.34 7.13 × 1017

i-ZnO 1.12 × 103 1.28 4.38 × 1015

n-ZnO 4.14 × 10−2 20.0 7.53 × 1018

TABLE 1 The resistivity ρ, carrier concentration N and mobility µ of p-GaN,
i-ZnO and n-ZnO
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FIGURE 2 RT PL spectra of p-GaN, i-ZnO and n-ZnO

for the low carrier mobility in i-ZnO layer, it may be attributed
to the grain-boundary and interface scattering [12].

The RT PL spectra of individual layers were showed in
Fig. 2. The PL spectrum of p-GaN showed only a strong
emission centered at 3.10 eV with multi-reflection interfer-
ence fringes. This band was generally attributed to transitions
from the conduction band or unidentified shallow donors to
deep Mg acceptors levels [10, 11]. The UV near-band-edge
(NBE) emission from GaN was not observed. Both i- and
n-ZnO displayed three emission bands: an UV NBE emis-
sion which originates from the recombination of ZnO free
and bound excitons, a deep-level green emission at ∼2.3 eV,
and orange emission at ∼1.95 eV. It is generally accepted that
the green and orange emission are associated with oxygen
vacancies and zinc interstitials in ZnO crystal lattice [13–16].
The UV emissions of i- and n-ZnO were located at 3.24 and
3.31 eV, respectively. The relative shift (70 meV) of UV emis-
sion may be attributed to the Burstein–Moss effect [17]. That
is, the electronic states near the bottom of the conduction band
are filled because of the high carrier concentration, which in-
duces the widened optical bandgap. Moreover, the deep-level
emission of n-ZnO was far stronger than that of i-ZnO, which
indicated the relatively higher concentration of native donor
defects in n-ZnO. This PL result was well consistent with
aforementioned electrical properties of ZnO layers.

The RT I–V characteristics of the GaN/ZnO p-n and p-i-n
heterojunctions were shown in Fig. 3. Both exhibited a recti-
fying, diode-like behavior. For p-GaN/n-ZnO heterojunction,
the forward turn-on and reverse breakdown voltages was ∼3
and ∼4 V, respectively. The relatively low forward and reverse
threshold voltages are probably due to the existence of inter-
face defects [10, 18], especially extended defects in n-ZnO.
In contrast with I–V characteristics of p-n heterojunctions,
due to the insertion of high-resistive i-ZnO layer, the rela-
tively higher turn-on voltage for forward (∼10 V) and reverse
(∼11 V) bias were obtained in p-i-n heterojunction, although
the turn on appeared very soft.
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FIGURE 3 RT I–V characteristics of the GaN/ZnO p-n and p-i-n hetero-
junctions

Figure 4 showed the RT EL spectra of the GaN/ZnO
p-n and p-i-n heterojunctions LEDs. A broad emission band
centered at 3.08 eV (403 nm) with a tail extended to longer
wavelength was observed in the EL spectrum of p-n hetero-
junction LED under forward bias. A comparison between EL
and PL spectra showed that the lineshape and peak position
of EL from p-n heterojunction was very similar to that of PL
from p-GaN (3.1 eV). Thereby, the 3.08 eV EL was reason-
ably attributed to Mg-levels related emission in p-GaN layer.
Similar EL results had been reported in ref. 10 and 11. In order
to understand the reason why EL of p-n heterojunction orig-
inated from the p-GaN side, we first considered their energy
band structure. The electron affinities of ZnO (χZnO) and GaN
(χGaN) are 4.35 and 4.2 eV [19], while the bandgaps of ZnO
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FIGURE 4 Magnified photographs of light output and RT EL spectra of the
GaN/ZnO p-n and p-i-n heterojunctions LEDs (Injection current, Im = 4 mA)

(EgZnO) and GaN (EgGaN) are 3.37 and 3.4 eV, respectively.
Based on the Anderson model [20], the conduction band offset
is �Ec = χZnO − χGaN = 0.15 eV, and the valence band off-
set is �Ev = EgZnO + �Ec − EgGaN = 0.12 eV. The afore-
mentioned calculations showed that the electrons in n-ZnO
and holes in p-GaN overcame almost equal barriers to real-
ize the carrier injection, that is, the type-II band alignment
at the ZnO/GaN heterointerface has a much weaker effect on
EL of p-n heterojunction. Thereby, the origin of EL would
be mainly determined by the differences of carrier mobility
and concentration between n-ZnO and p-GaN. As shown in
Table 1, the carrier concentration and mobility in n-ZnO was
much larger than that of the hole in p-GaN. Thereby, the
electrons injection from n-ZnO to p-GaN could overcome the
holes injection from p-GaN to n-ZnO. The radiative recom-
bination mainly occurred in the p-GaN side of p-GaN/n-ZnO
heterojunction.

In order to obtain EL from ZnO, a thin i-ZnO layer was
inserted, to form p-i-n heterojunction, as shown in Fig. 1. Be-
cause i-ZnO has the lowest carrier concentration and mobility
among the three layers, we can expect that the carriers includ-
ing holes from p-GaN and electrons from n-ZnO can inject
into i-ZnO layer, where the radiative recombination occurs.
As expected, different from the EL of p-n heterojunction, two
new emissions, including a narrow UV EL peak at 3.21 eV
and a very broad, weak emission band at ∼2.1 eV, were ob-
served in the EL spectrum of p-i-n heterojunction, as shown
in Fig. 4. Both emissions were located at almost the same
positions as those in PL spectra of i-ZnO. Thus, 3.21 and
∼2.1 eV EL bands were believed to originate from the active
i-ZnO region, and were attributed to UV NBE emission re-
lated to ZnO exciton recombination and deep-level emission
related to native defects, respectively. Moreover, a relatively
weak emission at 3.08 eV, which had been proved to be from
p-GaN layer, was also detected in EL spectrum of p-i-n het-
erojunction. The possible reason was that a small quantity of
electrons tunneled though i-ZnO layer, and were injected into
p-GaN region. The observation of ZnO EL confirmed that
the radiative recombination can be partly confined in i-ZnO
region by constructing p-i-n heterojunction. By further opti-
mizing the device structure, it is possible to suppress, even
eliminate the EL band from p-GaN.

4 Conclusion

In conclusion, we fabricated p-GaN/i-ZnO/n-ZnO
heterojunction LEDs. The I–V curve showed a diode char-
acteristic. By constructing p-i-n heterojunction, the radia-
tive recombination was partly transferred from p-GaN to
i-ZnO region. Thereby, an UV EL at 3.21 eV, related to
ZnO exciton recombination, was obtained from p-i-n het-
erojunction. Due to high exciton binding energy (60 meV)
of ZnO, such p-i-n heterojunction has the potential applica-
tions in UV LEDs and laser diode durable at high-temperature
operation.
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