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A ZnO p-n junction light-emitting diode �LED� was fabricated on a-plane Al2O3 substrate by
plasma-assisted molecular-beam epitaxy. NO plasma activated by a radio frequency atomic source
was used to grow the p-type ZnO layer of the LED. The current-voltage measurements at low
temperatures showed a typical diode characteristic with a threshold voltage of about 4.0 V under
forward bias. With increasing temperature, the rectification characteristic was degraded gradually,
and faded away at room temperature. Electroluminescence band of the ZnO p-n junction LED was
located at the blue-violet region and was weakened significantly with increase of temperature. This
thermal quenching of the electroluminescence was attributed to the degradation of the diode
characteristic with temperature. © 2006 American Institute of Physics. �DOI: 10.1063/1.2166686�
After being investigated as a green fluorescence material
for many years,1,2 recently, ZnO has attracted more and more
attentions as an ultraviolet light-emitting material.3,4 As an
oxide, ZnO is superior over nitrides in thermal stability as
well as in resistance to chemical attack and oxidation. Its
large exciton binding energy �60 meV� is in principle favor-
able to high efficient RT excitonic emission. In order to over-
come the “asymmetric doping” limitation, researchers have
concentrated on the growth of high quality p-type ZnO lay-
ers, and have achieved great improvements in the past three
years.5–7 However, only few works on p-n ZnO light-
emitting diode �LED� have been reported.8,9 Recently, Tsuka-
zaki et al. reported electroluminescence �EL� from a ZnO
p-n junction,6,10 which opened a door to realize ZnO-based
light-emitting diodes. In those reports, the LEDs were fabri-
cated either on ScAlMgO4, or bulk ZnO substrates.6,8,10 In
this letter, we report blue-violet light emission from a ZnO
p-n homojunction diode, where the p-type ZnO layer was
directly grown on a-plane Al2O3 substrate by using activated
NO plasma as oxygen source and acceptor dopant.

6N-purity Zn, 5N-purity NO, and O2 were used to grow
the LED structure. For the p-type layer, NO was used as O
source and N dopant simultaneously. Many experiments have
indicated that not all N-dopants in ZnO can be activated into
p-type carriers. To avoid double-donor doping of N2�O�,

11 N2

molecule content in the dopant should be decreased to as low
as possible. In this work, an optical spectral unit was em-
ployed to monitor in situ the plasma emission from the NO
species. Figure 1 shows typical emission spectrum of the NO
plasma activated by a radio frequency atomic source. The
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emission lines at 746 nm, 777 nm, and those in the ultravio-
let region, which originate from N atoms, O atoms, and N2
molecules, respectively, were used to estimate the contents of
the plasma species. The details of the growth processes for
the p-type ZnO layers were reported elsewhere.7 Hall-effect
measurements showed that N-doped ZnO films are p-type,
with hole concentrations of about 1.3�1017 cm−3, and a mo-
bility of 1.5 cm2 V−1 s−1 at 200 K, while with increase of
temperature, p-type conduction becomes unstable gradually.
The n-type ZnO layer was grown by using Zn and O2 as
precursors and controlling the parameters without donor
doping. The electron concentration and mobility of the
n-type ZnO layers are 7�1018 cm−3 and 40 cm2 V−1 s−1,
respectively.

FIG. 1. Typical emission spectrum of NO plasma. The emissions at 746 �N
atoms�, 777 �O atoms�, and ultraviolet region �N2 molecules� are used to

estimate the species contents of the plasma.

© 2006 American Institute of Physics1-1
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To identify the composition and chemical state of the
doped nitrogen in the p-type ZnO layers, x-ray photoelectron
spectroscopy measurement was conducted, as shown in Fig.
2. The Two peaks located at 406.8 and 398.4 eV, which cor-
respond to the N 1s core level, clearly indicated that nitrogen
was incorporated into the ZnO layers. The peak at 398.4 eV,
which is a typical signal of NuZn bond,12 dominated the
whole spectrum. This result confirmed the nitrogen substitu-
tion at the oxygen site �NO� of ZnO, acting as acceptor. The
peak appeared at higher binding energy 406.8 eV is due to
the N 1s core electron of nitrite NO;13 the contribution of this
nitride dopant to conducting carriers, however, is still not
clear.

The current-voltage �I-V� characteristics of the ZnO
LED measured at temperature of 11–300 K were shown in
Fig. 3�a�. The upper left inset shows the schematic structure
of the ZnO p-n junction LED. A 200 nm thick p-type ZnO
layer was grown directly on the a-plane Al2O3, which was
capped by a 200-nm-thick n-type layer. Ni/Au and In elec-
trodes were used to form ohmic contacts to p-type and
n-type layers, respectively. At low temperature, the ZnO
LED shows a good rectification characteristic with low leak-
age current. With increasing temperature, the leakage current
increases and the rectification characteristic becomes inferior

FIG. 2. A typical x-ray photoelectron spectrum obtained from the N-doped
p-type ZnO film. The peak at 398.4 eV corresponds to the N 1s binding
energy clearly indicated that N was incorporated in the ZnO film and acted
as acceptor.

FIG. 3. �a� I-V characteristics of the ZnO LED at temperatures of
11–300 K. The inset at top left corner is the schematic structure of the ZnO
p-n junction LED. �b� The I-V characteristics of the Ni/Au– p-ZnO contact
measured at temperatures from 11 to 300 K. The inset at the top left shows

ohmic contact characteristics of the In–n-ZnO contact at room temperature.
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gradually. At room temperature, the reverse current is com-
parable with the forward one, and the LED does not show
the rectification characteristics.

To analyze the influence of Ni/Au contact for p-type
ZnO on I-V characteristics of the p-n homojunction, we veri-
fied the ohmic behavior between the Ni/Au electrode and the
p-type ZnO layer. Figure 3�b� shows the I-V characteristics
of the Ni/Au– p-ZnO contact as a function of temperature
from 11 to 300 K. At low temperature �11–120 K�, the lin-
ear I-V curve is a good indicator of ohmic contact between
the electrode and the p-type layer, obviously different from
the I-V curve of the p-n junction showed in Fig. 3�a�. Within
increasing temperature up to �300 °C, the back-to-back
Schottky behavior becomes more obvious, having a turn-on
voltage of 1 V and a high leakage current. The results im-
plied that the character of the Ni/Au– p-ZnO contact has
gradually changed from ohmic to Schottky in the high-
temperature region. As a comparison, the top left inset in Fig.
3�b� depicts the I-V characteristic of the In–n-ZnO contact at
room temperature. The linear I-V line shape confirms the
ohmic contact between the In electrode and n-ZnO layer. The
I-V curves at higher temperatures showed that contact resis-
tances between the metal electrodes and semiconductor lay-
ers increased significantly with temperature. This means that
the conduction property of N-doped ZnO probably happens
to change with increasing temperature.

The EL spectra at 11–200 K are shown in Fig. 4, where
the injection current is fixed at 130 �A. There exist two
emission bands in the spectra: one is in the blue-violet region
and the other is in the green region. Upon increasing tem-
perature from 11 to 200 K, the blue-violet band shifts from

FIG. 4. EL spectra of the ZnO LED measured at temperatures of
11 to 200 K. The injection current was 130 �A. The lower panel of the
figure shows the PL spectra of the n-type and p-type ZnO films grown on
a-plane Al2O3 substrates, respectively, which were excited by the 325 nm
line of a He–Cd laser at 80 K.
410 to 430 nm, and the green band shifts from
cense or copyright; see http://apl.aip.org/about/rights_and_permissions
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520 to 540 nm. As seen, the EL decreased its emission inten-
sity significantly with increase of temperature, and quenches
at room temperature. This changing in intensity should be
relative to the deterioration of I-V characteristics. To inves-
tigate the origin of the EL band, the photoluminescence �PL�
spectra of the p-type and n-type ZnO films grown on sap-
phire substrates were measured, which were excited by
325 nm He–Cd laser at 80 K. As seen in Fig. 4, the EL
spectrum at 80 K is similar with the PL spectrum of p-type
ZnO at 80 K. For the p-n junction, because of low hole
density and mobility of the p-type ZnO layer, the combina-
tion of carriers was dominated by the injection of electrons
from the n-type layer to the p-type one. The PL band of the
p-type layer appears at violet region from 400 to 460 nm,
which can be attributed to donor-acceptor pair emission.14

Therefore, as reported in Ref. 10, the EL emission should
originate from the combination of donor-acceptor pairs in the
p-type layer.

The electric characteristics of the p-type layer at differ-
ent temperatures were measured to understand the I-V tem-
perature dependence. Carrier concentrations as a function of
temperature are plotted on a semilogarithmic scale in Fig. 5.
It can be seen that the nitrogen doping lead to a stable p-type
conduction at temperatures below 200 K, as measured by
multiple measurement. The hole density increased from 4.3
�1014 at 80 K to 1.3�1017 cm−3 at 200 K, while the hole
mobility decreased from 2.4 to 1.5 cm2 V−1 s−1 �see the inset
of Fig. 5�. At temperatures above 200 K, however, the p-type
carriers were somehow compensated and the p-type conduct-
ing became unstable. This compensation became more and
more significant with increase of temperature, and the prob-
ability of n-type measured by Hall effect was increased. At
room temperature, a transition from p-type conducting to
n-type conducting was observed in the nitrogen-doped ZnO
layer. The mechanism of the p-type conducting degradation
is not clear yet. Based on the criteria for p-type conducting in
Hall measurement p�p

2 �n�n
2, two reasons for the degrada-

tion of the p-type conductivity in the high-temperature re-
gion can be considered as follows: �1� thermal ionization of
some donor impurities in the p-type ZnO layer and �2� de-

FIG. 5. Temperature dependence of the carrier concentration on the semi-
logarithmic scale. Inset shows mobility of N-doped ZnO film at different
temperature.
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crease of hole mobility. When hole mobility �p�1, Hall
measurement is possible to show n-type, even if the sample
is p-type in nature according to Look’s explanation.15 The
degradations of I-V and EL at high temperature showed in
Figs. 3 and 4 implied that the degradation of the p-type con-
duction is the main reason for the thermal quenching of the
EL. With increasing temperature, the unstable p-type con-
ducting lead directly to the large current leakage in the I-V
curves showed in Fig. 3�a�.

In conclusion, we fabricated a ZnO LED on Al2O3 sub-
strate, where the p-type layer was obtained by using acti-
vated NO gas as O source and acceptor dopant. The ZnO
LED showed typical rectification characteristics, and the
threshold voltage for EL emission was as low as 4.0 V at
200 K. EL emission in the blue-violet region resulted from
the radiative recombination transition of the donor-acceptor
pair in the p-type layer of the LED. The deteriorations of the
I-V and EL characteristics in the temperature region were
attributed to the degradation of the p-type conducting of the
nitrogen-doped ZnO layer.
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