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Abstract

We report a new red Ir(III) complex, (btfmp),Ir(acac), with the trifluoromethyl-substituted 2-benzo[b]thiophen-2-yl-pyridine
ligand. Efficient red electrophosphorescence with CIE coordinates (x = 0.69, y = 0.29) independent on current density was observed
from the (btfmp),Ir(acac) doped devices. The electroluminescent (EL) spectrum has a maximum at /,,,x = 648 nm. Maximum exter-
nal quantum efficiency of 9.6% at current density of 0.125 mA/cm? and 3.7% at J = 100 mA/cm? were obtained.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The organic light-emitting diodes (OLEDs) using
phosphorescent dopants have attracted much attention
due to their high external quantum efficiency in recent
years [1-4]. Cyclometalated heavy metal complexes used
as guest in phosphor dye-doped OLEDs have been re-
ported [5-7]. For the red phosphor, the first example
was based on PtOEP doped in CBP [1], achieving an
external quantum yield of 5.6% [8]. More recently, effi-
cient red EL emission has been reported from phosphor
(btp),Ir(acac), reaching 7.0% at low current [3]. But
comparing with green phosphors, the red emitters of
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high efficiency are more desirable for commercial full
displays.

Fluorination is an effective way to enhance both elec-
tron mobility and thermal stability of organometallic
complexes [9], which are important for fabrication and
performance of solid film devices [10]. It has been
reported that fluorinated complexes exhibited markly
improved EL efficiency partly due to excellent volatility
which aids device processing [11,12].

In this work, we report a new red light emitting Ir(IIT)
complex [(btfmp),Ir(acac)] using 2-benzo[b]thiophen-
2-yl-5-trifluoromethyl-pyridine as the ligand, and its
application for OLEDs. The trifluoromethyl substitution
at this position influenced the electron extent of deloca-
tion between the pyridyl and benzo[b]thiophen-2-yl
rings, which was supposed to tune the electron structure
and hence to result in efficient host-to-guest energy
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transfer, an improved EL efficiency based on the new
Ir(I1T) complex has been obtained.

2. Experimental

2-Chloro-5-trifluoromethyl-pyridine,  benzo[b]thio-
phene-2-boronic acid, CBP, NPB, BCP, and IrCl;-
nH,O were from Aldrich, and used without further
purification. Thermogravimetric analysis (TGA) was
performed by a TGA 2950 thermal analyzer (TA Co.)
under N, stream with a scanning rate of 10 °C/min.
Absorption spectrum was measured on UV-VIS-NIR
scanning spectrophotometer. EL spectra were measured
with a F-4500 Fluorescence Spectrometer. Brightness—
current-voltage (B—I-V) characteristics were measured
by using a 3645 DC power supply combined with a
1980A Spot Photometer. External quantum efficiency
was calculated from the luminance, current density,
and EL spectrum according to standard method [13].

2.1. Synthesis and characterization of ligand

2-Benzo[b]thiophen-2-yl-5-trifluoromethyl-pyridine
(Scheme 1) was synthesized according to literature pro-
cedure [14]. The white product with the yield of 75% was
obtained.

'"H NMR (300 MHz, CDCl;) 6 (ppm): 8.80 (s, 1H),
7.80 (m, 5H), 7.3 (t, 2H). Anal. Found: C, 60.09; H,
2.693; N, 4.913. Calcd.: C, 60.22; H, 2.867; N, 5.018.

2.2. Synthesis and characterization of iridium complex

Bis(2-benzo[b]thiophen-2-yl-5-trifluoro methyl-pyrid-
inato-N,C*) iridium (acetyl acetonate) [(btfmp),Ir
(acac)] (Scheme 2) was obtained in two steps using stan-
dard procedure [15]. First, a cyclometalated Ir(III)
m-chloro bridged dimer was synthesized by the reacting
IrCl; - nH,0 and 2-benzo[b]thiophene-2-yl-5-trifluorom-
ethyl-pyridine. Then, the dimer was reacted with acety-
lacetone in 2-ethoxyethanol. The red powder was
afforded in 65% yield with train sublimation.

"H NMR (300 MHz, CDCl;) § (ppm): 8.56 (s, 2H),
7.65 (d, 2H), 7.60 (t, 2H), 7.10 (m, 4H), 6.79 (t, 2H),
6.16 (d, 2H), 5.25 (s, 1H), 1.75 (s, 6H). Anal. Found:
C, 46.56; H, 2.455; N, 3.277. Calcd.: C, 46.85; H,
2.485; N, 3.313.
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2.3. Device fabrication

Fig. 1 shows the chemical structures of materials used
and the device configuration ITO/NPB/(btfmp),Ir
(acac):CBP/BCP/Alqs/LiF/Al. The multilayered devices
consisted of a 40 nm thick NPB (4,4'-bis[N-(1-naph
thyl)-N-phenyl-aminoJbiphenyl) as a hole transporting
layer, a 30nm thick (btfmp),Ir(acac) doped CBP
(4,4'-N,N’-dicarbazole-biphenyl) as an emitting layer,
a 20 nm thick BCP (2,9-dimethyl-4,7-diphenyl-phenan-
throline) as a hole blocking layer, a 30 nm thick Alqgs
(tris(8-hydroxy quinolinato)aluminium(III)) as an elec-
tron transporting layer, and a 1 nm LiF followed by
200 nm aluminium cathode. The devices were succes-
sively deposited onto a ITO coated glass substrate with
a sheet resistance of 20Q/J in high vacuum of
5% 107* Pa during one pump down. Prior to use, the
ITO glass substrates were rinsed and degreased by son-
ication in a detergent solution, distilled water, and ace-
tone. The substrates were treated by UV-ozone for
30 min before loading into a vacuum chamber [16].

Al(200 nm) [I . ,%); il:.b
LiF (1nm) N
Alq, 30nm) @J

BCP (20nm) Alqg,

Ir complex+CBP (30nm) @ Q
NPB (40 0
(400m) 7\ \

TTO N N-
Glass HSC CH3

BCP

X

D CBP ® [ DI gi
@ @ =

2
0@ NPB (btfmp),Ir(acac)

Fig. 1. Configuration of the device and chemical structures of
materials used.
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The emissive area of the device defined by the overlap-
ping area of the cathode and the anode was 15 mm?.
All measurements were carried out in air at room

temperature.

3. Results and discussion

Fig. 2 shows the absorption spectrum of the complex
(btfmp),Ir(acac) in CH,Cl,, which are similar with that
of (btp),Ir(acac) [15]. The intense absorption bands at
higher energy were assigned to m—m* ligand-centered
(LC) transitions, and low energy bands in the range of
460-560 nm to singlet and triplet MLCT transitions.
The '"MLCT and *MLCT were not well resolved, which
has been observed from the complex (bzq),Ir(acac)
[6,15]. A large Stokes shift between the *MLCT absorp-
tion and emission bands was observed, so (btfmp),Ir
(acac) should emit from an excited state that is predom-
inantly due to (n—n*) [15,17].
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Fig. 2. The absorption spectrum of (btfmp),Ir(acac) in CH,Cl,.
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Fig. 3. Electroluminescent spectra of device doped with 7%
(btfmp),Ir(acac) at various drive current densities.
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Fig. 4. External quantum efficiency (#ex) Vvs. current density of EL
device doped with 7% (btfmp),Ir(acac).

The peak wavelength of phosphorescent emissions
can be tuned by changing the substituents and their
position [10,18]. In this work, substitution of an elec-
tron-with drawing group (trifluoromethyl) onto the 5-
position of the pyridyl ring lowered the LUMO Ilevel,
and reduced the HOMO-LUMO gap of the complex,
and hence a 30 nm red shifted was observed comparing
to that of (btp),Ir(acac) [15].

In vacuum deposition process, OLED materials
should be stable even at high temperature, because the
decomposition products may contaminate the OLED
and lead to poor device performance.

Thermogravimetric analysis (TGA) under 1 atm of
flowing N, showed that the sublimation temperature
of (btfmp),Ir(acac) was 340 °C (the temperature is at
point of 10% weight loss), about 30 °C lower than that
of (btp),Ir(acac), and suitable for thermal evaporation.

The EL spectra with a peak at 648 nm are shown in
Fig. 3, corresponding to deep red light emission. The
CIE color coordinates were x =0.69, y =0.29, inde-
pendent of current density, even at J> 255 mA/cm>.
There was no blue emission from CBP host, indicating
complete energy transfer from CBP host-to-guest
(btfmp),Ir(acac).

Table 1 summarizes the external quantum efficiency
and maximum brightness of the devices doped with var-
ious ratio of (btfmp),Ir(acac). When the concentration
(wt%) of (btfmp),lIr(acac) in CBP was 7%, a maximum
external quantum efficiency of 9.6% at J=0.125 mA/
cm® and a maximum luminance of 4200 cd/m? at
J =552 mA/cm? were obtained.

Fig. 4 shows external quantum efficiency (7cyx) Vs.
current density for the device doped with 7%

Table 1

External quantum efficiency (%) and maximum brightness (cd/m?) of the devices with various (btfmp),Ir(acac) doped concentration
Devices A B C D
(btfmp),Ir(acac) concentration in CBP (wt%) 5 6 7 8

External quantum efficiency (%) at J (mA/cm?) 5.2(1.8) 8.6 (0.127) 9.6 (0.125) 8.7 (0.089)
Maximum brightness (cd/m?) at J (mA/cm?) 3200 (632) 3600 (598) 4200 (552) 3400 (357)
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(btfmp),Ir(acac), the device showed a gradual decrease
of ney With increasing current, which was attributed to
T-T annihilation [19,20]. But, at J = 100 mA/m?, the
(btfmp),Ir(acac) doped device showed a relatively high
Hext = 3.7%.

4. Conclusion

In summary, we report a new red iridium complex
[(btfmp),Ir(acac)] with trifluoro methyl-substituted
2-benzo[b]thiophen-2-yl-pyridine ligand. This study
demonstrated that a CF; substituent at the 5-position
of the pyridyl ring of 2-benzo[b]thiophen-2-yl-pyridine
tuned the energy levels, and improved sublimation
behavior of iridium complex. The deep red light emitting
EL device based on the (btfmp),Ir(acac) showed a peak
external quantum efficiency of 9.6%. The EL efficiency
can be further enhanced by choosing a suitable host
material or optimization of the device structure.
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