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Abstract
Efficient white organic light-emitting diodes (WOLEDs) in which the blue
and red emissions come from bis[(4,6-diflourophenyl)pyridinato-N,C2′

]
(picolinato)iridium(III) and bis[2-(2′-benzothienyl)pyridinato-N,C3′

]
(acetylacetonato)iridium(III) doped 4,4′-N,N′-dicarbazole-biphenyl (CBP)
layers while the green emission comes from an ultrathin non-doped
fac-tris[2,5-di(4-methoxyphenyl) pyridinato-C,N]iridium(III) [Ir(dmoppy)3]
sub-monolayer are demonstrated. The electroluminescent spectra of the
devices can be fine tuned by the Ir(dmoppy)3 thickness. The optimized
device with 0.25 nm Ir(dmoppy)3 shows a maximum current efficiency,
power efficiency and luminance of 10.8 cd A−1, 4.5 lm W−1 and
12560 cd m−2, respectively. Atomic force microscopy images reveal that the
ultrathin non-doped layer is discontinuous. When sandwiched between the
CBP and bathocuproine (BCP) layers, it forms a doping profile similar to the
situation when the Ir(dmoppy)3 is doped into CBP and BCP simultaneously.

1. Introduction

White organic light-emitting diodes (WOLEDs) have drawn
considerable attention due to their potential applications as
full colour displays, backlights for liquid-crystal displays
and even next generation paper-thin lighting sources [1–
10]. White light emission in organic light-emitting diodes
(OLEDs) can be obtained by mixing two complementary
colours or three primary colours. For lighting and full
colour displays, a combination of the three primary colours
is required to fully span the entire visible spectrum. There
are many methods to achieve white light emission, including
single layer polymer blends [11, 12], exciplexes [13, 14],
hybrid organic/inorganic structures [15, 16] or multilayer
structures [17–20]. Among these strategies, multilayer

3 Author to whom any correspondence should be addressed.

technology based on phosphorescent materials which have the
potential for achieving 100% internal quantum efficiency [21]
stands out as the most effective mechanism for WOLEDs.
Recently, the non-doped strategy has been adopted for
WOLEDs to simplify the fabrication process. There are
many reports on fluorescent WOLEDs based on this non-
doped strategy [22–25]; however, there are few reports on the
phosphorescent WOLEDs based on this strategy.

In this communication, we report on WOLEDs in which
the blue and red emissions come from bis[(4,6-diflourophenyl)
pyridinato-N,C2′

](picolinato)iridium(III) (FIrpic) and bis[2-
(2′-benzothienyl) pyridinato-N, C3′] (acetylacetonato)iridium
(III)[btp2Ir(acac)] doped 4,4′-N,N′-dicarbazole-biphenyl
(CBP) layers, respectively, and the green emission comes from
an ultrathin non-doped fac-tris[2,5-di(4-methoxyphenyl)pyri-
dinato-C,N]iridium(III) [Ir(dmoppy)3] layer. Figure 1 shows
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Figure 1. Device structure of the WOLEDs and the chemical
structures of the materials used.

the chemical structures of the phosphorescent materials
used here, and these three phosphorescent materials were
synthesized in our laboratories. The green emitter,
Ir(dmoppy)3, was demonstrated as an excellent emitter
whose performances are superior to the traditional one, fac-
tri(phenylpyridine)iridium(III) [Ir(ppy)3] [26]. Incorporating
a methoxyl and a 4-methoxyphenyl onto the 4- and 5-positions
of the pyridyl ring not only brings a 20 nm red shift of the
spectrum, which is essential for the WOLEDs to fully span
the entire visible spectrum compared with that of Ir(ppy)3,
but also prevents the intermolecular aggregation between
the Ir(dmoppy)3 molecules due to the extended spatial block
effect.

2. Experimental

The WOLEDs have the structures of indium tin oxide
(ITO)/NPB (40 nm)/CBP: FIrpic (8 wt%, 20 nm)/
CBP (3 nm)/CBP:btp2Ir(acac) (4 wt%, 2 nm)/CBP (x nm)/
Ir(dmoppy)3 (d nm)/BCP (10 nm)/Alq3 (20 nm)/LiF (0.5 nm)/
Al (100 nm), as shown in figure 1, where, N,N′-diphenyl-N,N′-
bis(1-naphthyl)-(1,1′-benzidine)-4,4′-diamine (NPB), bathoc-
uproine (BCP) and tris(8-hydroxyquinoline)aluminium (Alq3)
act as the hole-transporting layer, exciton-blocking layer and
electron-transporting layer, respectively. Two non-doped CBP
layers were used as spacers to separate the three emission reg-
ions and prevent the energy transfer from the higher energy
emitters to the lower one. The thickness of the spacer inserted
in the CBP : FIrpic/CBP : btp2Ir(acac) interface was fixed at
3 nm, while the one in the CBP : btp2Ir(acac)/Ir(dmoppy)3

interface was changed. Two series devices, one with a dif-
ferent Ir(dmoppy)3 thickness and the other with a different
CBP spacer thickness, were fabricated. Organic layers were
deposited onto a pre-cleaned ITO glass substrate (25 �/square)
by thermal evaporation in a vacuum chamber at 3 × 10−4 Pa,
followed by a LiF buffer layer and an Al cathode in the same
vacuum run. Deposition rates and thicknesses of the layers
were monitored in situ using an oscillating quartz monitor. The
evaporating rates were kept at 0.2–0.5 Å s−1 for Ir(dmoppy)3

layer, 0.5–1 Å −1s for other organic layers and LiF layer and
10 Å s−1 for the Al cathode, respectively. Due to the island na-
ture of the ultrathin Ir(dmoppy)3 layers, the thicknesses of these
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Figure 2. (a) Effect of the Ir(dmoppy)3 thickness on the EL spectra
at 10 V. (b) Effect of the CBP thickness on the EL spectra at 10 V.

layers only represent the densities of the islands. Electrolumi-
nescent (EL) spectra and CIE coordinates of these devices were
measured by a Hitachi MPF-4 fluorescence spectrophotometer.
The luminance–current–voltage (L–I–V ) characteristics were
measured with a 3645 dc power supply combined with a spot
photometer and were recorded simultaneously with measure-
ments. The morphologies of 0.5 nm Ir(dmoppy)3 and 30 nm
CBP coated silicon wafers were examined using a Nanoscope
DimensionTM 3100 atomic force microscope (AFM); mean-
while, the morphology of the silicon wafer was also examined
for reference. All the measurements were carried out at room
temperature under ambient conditions.

3. Results and discussions

Figure 2(a) shows the normalized EL spectra of the devices
with different Ir(dmoppy)3 thicknesses when the CBP layer
was fixed at 5 nm at an applied bias of 10 V. The blue, green and
red emissions of 472 nm with the shoulder at 500 nm, 531 nm
and 618 nm with the shoulder at 670 nm come from FIrpic,
Ir(dmoppy)3 and btp2Ir(acac), respectively. The emission
of FIrpic decreases relative to that of btp2Ir(acac) with an
increased Ir(dmoppy)3 layer thickness; correspondingly, the
CIE coordinates shift from (0.31,0.30) to (0.45,0.46). Under
the electrical field, excitons are predominantly formed in the

2784



WOLEDs comprising an ultrathin iridium complex sub-monolayer

Table 1. Devices’ performances.

Ir(dmoppy)3 CBP Max Max CIE
thickness thickness efficiency Max ηp luminance coordinates
(nm) (nm) (cd A−1) (lm W−1) (cd m−2) at 10 V

0.12 5 8.1 4.2 9480 (0.30,0.31)
0.25 3 6.4 3.3 11540 (0.32,0.32)
0.25 5 10.8 4.5 12560 (0.39,0.38)
0.25 8 11.9 5.6 14100 (0.39,0.45)
0.50 5 12.1 5.4 15640 (0.45,0.46)
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Figure 3. EL spectra of the optimized WOLED under different
biases.

region of the emitting layer adjacent to the BCP exciton-
blocking layer. Excitons can be formed on CBP molecules
as well as on the emitters directly after they trap the holes and
electrons. The excitons on CBP can diffuse to the layer far
from the excitons formation layer, i.e. the FIrpic doped CBP
layer, due to the triplet excitons typically having long diffuse
lengths [27]. Increased Ir(dmoppy)3 layer thickness would
increase the number of excitons formation in Ir(dmoppy)3

and the energy transfer from CBP to Ir(dmoppy)3, and hence
reduce the excitons diffusion to the FIrpic. With the increased
emission of Ir(dmoppy)3, the efficiency of the device increases
from 8.1 to 12.1 cd A−1 when the Ir(dmoppy)3 thickness
increases from 0.12 to 0.50 nm. Figure 2(b) shows the
normalized EL spectra of the devices with different CBP spacer
layer thicknesses when the Ir(dmoppy)3 thickness was fixed at
0.25 nm at an applied bias of 10 V. It can be found that the
Ir(dmoppy)3 emission increased with the CBP layer thickness
due to the decreased energy transfer from Ir(dmoppy)3 to
btp2Ir(acac); correspondingly, the CIE coordinates of the
devices changes from (0.32,0.32) to (0.39,0.45). Similarly,
the increased Ir(dmoppy)3 emission also leads to the increased
device efficiency. Table 1 summarizes the performances of the
devices with different Ir(dmoppy)3 and/or CBP thicknesses.

Figure 3 shows normalized EL spectra of the optimized
device with 0.25 nm Ir(dmoppy)3 and 5 nm CBP layers at
different applied biases. As the applied bias of the device
increases, the emission of FIrpic increases due to the saturated
emission of Ir(dmoppy)3 and btp2Ir(acac) and the changed
recombination zone at a higher current density. The CIE
coordinates of the device at 8 V, 10 V, 12 V, 14 V and 16 V
are (0.41, 0.39), (0.39, 0.38), (0.36, 0.37), (0.33, 0.36) and
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Figure 4. Current efficiency and power efficiency versus current
density of the optimized WOLED. Inset: Current density–
voltage–luminance characteristics of the optimized device.

(0.32, 0.36), respectively, and all these coordinates are in the
white region.

Figure 4 plots the current efficiency and power efficiency
as a function of current density of the optimized device.
The maximum current efficiency and power efficiency of
10.8 cd A−1 and 4.5 lm W−1 are achieved at a current density of
0.26 mA cm−2 and then gradually decrease with the increased
current density due to triplet–triplet annihilation [28]. The
lower efficiencies of the device compared with the other
reported phosphorescent WOLEDs may be due to the lower
purities of the phosphorescent materials. The device has a
turn on voltage of about 4.2 V and a maximum luminance of
12560 cd m−2 at an applied bias of 16 V, as shown in the inset
of figure 4.

To further understand the effect of the ultrathin non-doped
Ir(dmoppy)3 layer inserted between the CBP and the BCP
layers, the surface state of the ultrathin non-doped Ir(dmoppy)3

layer was investigated by atomic force microscopy (AFM).
Figure 5 shows the morphologies of the bare silicon wafer,
0.5 nm Ir(dmoppy)3 and 30 nm CBP coated silicon wafers. It
can be noted that the 0.5 nm Ir(dmoppy)3 film is discontinuous
and there are some islands separated by gaps, while the
morphology of CBP is rough. When the ultrathin Ir(dmoppy)3

sub-monolayer is deposited onto the rough CBP layer followed
by a BCP layer, then from the structural viewpoint, it is similar
to the dope-type device in which the Ir(dmoppy)3 is doped into
CBP and BCP simultaneously. Different from the conventional
doped devices which have a doped layer extended up to several
nanometres, this type of devices only have an ultrathin doped
layer due to the Ir(dmoppy)3 molecules distributed in two
dimensions.
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Figure 5. AFM images of silicon wafer (a), 0.5 nm Ir(dmoppy)3 (b) and 30 nm CBP (c) coated silicon wafers.

(This figure is in colour only in the electronic version)

4. Summary

In summary, efficient WOLEDs comprising an ultrathin non-
doped Ir(dmoppy)3 layer were presented. The optimized
device shows a maximum current efficiency, power efficiency
and luminance of 10.8 cd A−1, 4.5 lm W−1 and 12560 cd m−2,
respectively. All the CIE coordinates of the devices are in the
white region from 8 to 16 V. The AFM images reveal that the
ultrathin non-doped Ir(dmoppy)3 layer is discontinuous with
some islands and formed a doping profile when sandwiched
between the CBP and BCP layers. Our finding has potential
use in simplifying the architecture and fabrication process of
the OLEDs and hence cutting down the cost.
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