

Chemical Physics Letters 434 (2007) 237-240

Enhancement of the red emission in CaTiO₃:Pr³⁺ by addition of rare earth oxides

Xianmin Zhang ^{a,b}, Jiahua Zhang ^{a,*}, Xia Zhang ^a, Li Chen ^{a,b}, Yongshi Luo ^{a,b}, Xiao-jun Wang ^{a,c,*}

^a Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

^b Graduate School of Chinese Academy of Sciences, Beijing 100039, China
^c Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA

Received 30 August 2006; in final form 29 November 2006 Available online 9 December 2006

Abstract

Enhancement of the 1D_2 – 3H_4 red emission of CaTiO_3:Pr $^{3+}$ with addition of rare earth oxides Ln_2O_3 (Ln = Lu, La, Gd) is reported. Ca^{2+} and Ti^{4+} in CaTiO_3 can be substituted by Ln^{3+} ions as donors and acceptors, respectively. Ca^{2+} and Ti^{4+} vacancies, as quenching centers in the host, are effectively suppressed by the self-compensation, leading to the increase of lifetimes and then the emission efficiency of 1D_2 . The red fluorescence intensity for $CaTiO_3:Pr^{3+}$ phosphor co-doped with 5 mol% Lu_2O_3 is nearly 3 times greater than that of the Lu-free samples.

© 2007 Elsevier B.V. All rights reserved.

Great attention has been paid recently on the development of advanced displays for the multimedia applications, which can replace some cathode-ray tubes (CRTs). Field emission display (FED) is one of the candidates for advanced flat-panel applications [1,2]. Therefore, the development of phosphors suitable for FED is urgently needed.

In 1994, CaTiO₃:Pr³⁺ was first reported as a promising red FED phosphor [3]. Two years later, Sung et al. optimized the preparation conditions of CaTiO₃:Pr³⁺ [4] and further stimulated the research on enhancing the red luminescence of the phosphor [5]. It was reported early that the red emission of SrTiO₃:Pr³⁺ with addition of Al³⁺ was greatly intensified compared to the Al-free samples under low-energy electron or ultraviolet light excitation [6,7]. In SrTiO₃:Pr³⁺, Al³⁺, Pr³⁺ substituted for the Sr²⁺ sites, and then the charge was balanced by the substitution of

Al³⁺ for Ti⁴⁺ sites. The charge compensation reduced the point defects around Pr³⁺ and increased the energy transfer from SrTiO₃ to Pr³⁺. Enhancement of emission by addition of other trivalent metal ions, such as B³⁺, Ga³⁺ and In³⁺ in SrTiO₃:Pr³⁺ phosphor [1] and Sc³⁺, Yb³⁺ in BaTiO₃:Pr³⁺ phosphor [8], was also observed. The red emissions of Prdoped CaTiO₃ phosphor were stronger than that of Prdoped SrTiO₃ and BaTiO₃ and even better than their enhanced emissions [6,9]. However, the emission efficiency of CaTiO₃:Pr³⁺ was low for any practical applications [5], requiring further enhancement of its red emission. Some improvements were obtained by adding metal ions such as Na⁺, Tl⁺ and Ag⁺ for charge compensation. The emission intensities were enhanced up to factors of 1.3 and 1.6 by adding Na⁺ or Tl⁺ and Ag⁺ to the CaTiO₃:Pr³⁺ system, respectively [5].

In this Letter, the enhancement of photoluminescence (PL) intensity is reported in $CaTiO_3:Pr^{3+}$ phosphor with addition of rare earth oxides, Ln_2O_3 (Ln = Lu, La, Gd). It is observed that the PL intensity is nearly triple for 5 mol% Lu_2O_3 added samples compared to the Lu-free samples. The emission efficiency of $CaTiO_3:Pr^{3+}$ is

^{*} Corresponding authors. Address: Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA (X.-j. Wang). Fax: 912 681 0471.

E-mail addresses: zjiahua@public.cc.jl.cn (J. Zhang), xwang@georgia-southern.edu (X.-j. Wang).

improved by reducing the amount of defect centers. The dynamical processes of the emission are studied and the mechanisms of the fluorescence enhancement investigated.

For sample preparation, the powder mixture of CaCO₃, TiO₂, rare earth oxides Ln₂O₃ (Ln = Lu, La, Gd), and PrCl₃ solution were resolved into the de-ionized water, and then heated at 100 °C for 3–5 h to obtain the dried powders. The powders were grounded in fume cupboard for 1 h until the pellets formed. The pellets were then sintered at 1400 °C for 3 h under air. The doped concentration of Pr³⁺ was fixed at 0.1 mol%. The structure of the final products was characterized by powder X-ray diffractometer using a Cu target radiation source. PL, PL excitation (PLE), and diffused reflectance spectra were measured using Hitachi F-4500 fluorescence spectrophotometer. The third harmonic of a pulsed Nd–YAG laser (355 nm) together with Tektronix digital oscilloscope (model TDS 3052) was used for lifetime measurement.

Fig. 1 shows the powder X-ray diffraction (XRD) patterns of CaTiO₃:Pr³⁺ with and without the addition of 2.5 mol% Ln_2O_3 (Ln = Lu, La, Gd). The phase of CaTiO₃:Pr³⁺ is orthorhombic (JCPDS No. 82-0228). There are no extra peaks observed in the XRD patterns from the Ln₂O₃ added samples, suggesting that Ln³⁺incorporates into CaTiO₃ lattice. The inset of Fig. 1 shows the shifts of the main XRD peak to the lower-angle side in the Lnadded samples compared to the Ln-free sample, which can be attributed to the lattice expansion because the ionic radii of Ln³⁺ are larger than that of Ti⁴⁺ in the six-coordinated state [1]. There is no significant shift of XRD peaks observed as Ca²⁺ is replaced by Ln³⁺, since the ionic radii of Ln³⁺ are close to that of Ca²⁺ in the twelve-coordinated state [1]. Therefore, the shifts provide the evidence of Ln³⁺ substitution for the Ti⁴⁺ instead of Ca²⁺. Table 1 lists the

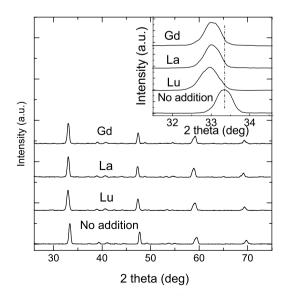


Fig. 1. Powder XRD patterns of $CaTiO_3:Pr^{3+}$ with and without 2.5 mol% Ln_2O_3 (Ln=Lu,La,Gd) addition. Inset: expanded XRD patterns around the 33.1° peak of $CaTiO_3:Pr^{3+}$. The dashed line indicates the position of the XRD line in $CaTiO_3:Pr^{3+}$ without Ln_2O_3 addition.

Table 1
The related ion radii in the six- and twelve-coordinated states

Ion	La ³⁺	Gd ³⁺	Lu ³⁺	Pr ³⁺	Ca ²⁺	Ti ⁴⁺
Radius (Å) (VI)	1.032	1.00	0.861	0.99	-	0.605
Radius (Å) (XII)	1.36	~ 1.20	~ 1.14	~ 1.30	~ 1.34	_

related ion radii in the twelve and six-coordinated state [10].

To further explore the site-occupancy of Ln³⁺ ions in CaTiO₃:Pr³⁺, the non-stoichiometrical CaTiO₃:Pr³⁺ samples with or without Lu₂O₃ addition are examined Fig. 2 shows the diffused reflectance spectra of the samples with different Ca/Ti ratios. The valence-to-conduction absorption bands with edge around 330 nm are clearly presented in all the samples. In comparison with the stoichiometrical samples (Fig. 2b), there appears an extra shoulder around 380 nm in Lu free sample with Ca/Ti = 0.9 (dashed line in Fig. 2a). This shoulder can be reasonably attributed to the absorption of some defects related to Ca²⁺ vacancies, which are easily generated in the sample by the deficiency of Ca. It is found that the shoulder disappears as Lu₂O₃ is added (solid line in Fig. 2a), indicating the elimination of Ca²⁺ vacancies. As a result, Ca²⁺ vacancies are considered to be occupied effectively by Lu³⁺ ions acting as donors [11]. Fig. 2c depicts that the Lu-free sample with Ti/Ca = 0.9 exhibits lower reflectance than the sample with Ca/Ti = 0.9 or Ca/Ti = 1.0. From the figure, it is speculated that Ti⁴⁺ vacancies have absorption in the whole visible range. When Lu₂O₃ is added, the reflectance increases slightly in the spectral range, indicating that Ti⁴⁺ vacancies are more difficult for Lu³⁺ occupation than Ca²⁺ vacancies. Moreover, the change of body color for these phosphors is in agreement with the enhancement of

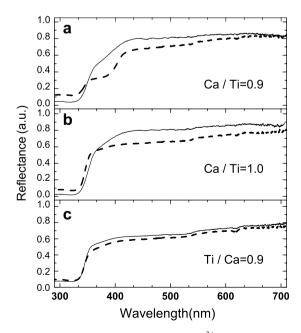


Fig. 2. Diffused reflectance spectra of CaTiO₃:Pr³⁺ with or without Lu₂O₃ addition. (a) Ca/Ti = 0.9; (b) Ca/Ti = 1.0; (c) Ti/Ca = 0.9. Solid lines: 5% Lu₂O₃ added samples; dashed lines: Lu-free samples.

reflectance when Lu₂O₃ is added. The body colors for Ca/Ti = 0.9 and Ca/Ti = 1.0 samples without Lu₂O₃ addition are brown and become whitish when Lu₂O₃ is added; while the brown body color of the sample with Ti/Ca = 0.9 has no change when adding Lu₂O₃ into the host. The similar changes of body color for La or Gd-doped CaTiO₃:Pr³⁺ have also been observed.

Fig. 3 presents PL ($\lambda_{\rm ex}=330~{\rm nm}$) and PLE ($\lambda_{\rm em}=615~{\rm nm}$) spectra of CaTiO₃:Pr³⁺ with different concentrations of Lu₂O₃. The PLE spectra mainly consist of two broad bands centered at 330 nm and 370 nm, respectively. The former corresponds to the absorption of Pr³⁺ 4f5d states [12] and the latter is attributed to a low-lying Prto-metal (Pr³⁺-Ti⁴⁺) intervalence charge transfer state (IVCT) [13]. A group of weaker peaks are detected at 458 nm, 480 nm and 495 nm, corresponding to the ${}^{3}\mathrm{H}_{4} \rightarrow {}^{3}\mathrm{P}_{2}, {}^{3}\mathrm{P}_{1}, \text{ and } {}^{3}\mathrm{P}_{0} \text{ transitions of } \mathrm{Pr}^{3+}, \text{ respectively}$ [12]. The PL spectra show the intensity-calibrated red emissions peaking at 615 nm due to the ¹D₂-³H₄ transition of Pr³⁺. It is clearly exhibited that the red emissions are enhanced by the addition of Lu₂O₃. The maximum enhancement occurs in 5 mol% Lu₂O₃ added sample, where the emission intensity is nearly 3 times greater than that of the Lu-free sample. In order to understand the mechanism of the fluorescence enhancement, the lifetimes of the ¹D₂ level of Pr³⁺ are measured for the samples with different Lu₂O₃ concentrations and are plotted in Fig. 4. For comparison, the dependence of the red fluorescence intensity on Lu₂O₃ concentration is also presented, showing that the lifetimes and the fluorescence intensities increase in the same scale as Lu₂O₃ concentration increases. This indicates that the fluorescence enhancement is due to the increase of ${}^{1}D_{2}-{}^{3}H_{4}$ emission efficiency. As a result, it is believed that there originally exist some defects as nonradiative recombination centers for ¹D₂ level of Pr³⁺. The number of centers may be reduced by the addition of

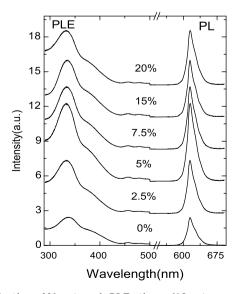


Fig. 3. PL (λ_{ex} = 330 nm) and PLE (λ_{em} = 615 nm) spectra of Ca-TiO₃:Pr³⁺ with different concentrations (0%, 2.5%, 5%, 7.5%, 15%, and 20%) of Lu₂O₃.

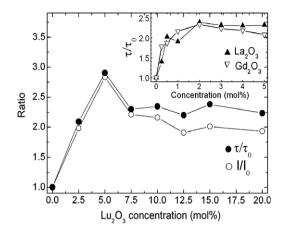


Fig. 4. The lifetimes of the 1D_2 level and PL intensities of red emission ($\lambda_{\rm ex}=330~{\rm nm}$) in CaTiO₃:Pr³⁺ with different concentrations of Lu₂O₃. For better comparison, lifetimes (τ) and PL intensities (I) are plotted as ratios to τ_0 and I_0 , respectively, where τ_0 (51.87 μ s) and I_0 are the corresponding values for additive-free sample. Inset: the lifetime ratios of the 1D_2 level of red emissions in CaTiO₃:Pr³⁺ with different concentrations of La₂O₃ and Gd₂O₃.

 Lu_2O_3 , leading to the increase of red fluorescence lifetimes and intensities. In $CaTiO_3:Pr^{3+}$, Pr^{3+} substitutes for Ca^{2+} , creating point defects, such as Ca^{2+} vacancies or Ti^{4+} , to compensate extra positive charge of Pr3+. In addition, the Ca²⁺ or Ti⁴⁺ vacancies can be formed during the sintering process. As shown in Fig. 2, Lu³⁺ can substitute either Ca²⁺ as donors or Ti⁴⁺ as acceptors [14] in CaTiO₃:Pr³⁺, Lu³⁺. This self-compensation has been observed in Sm₂O₃, Y₂O₃, and Ho₂O₃ doped BaTiO₃ ceramics [11,14–17]. The addition of Ln³⁺ in CaTiO₃:Pr³⁺ reduces the point defects, such as Ca²⁺ and Ti⁴⁺ vacancies, which act as nonradiative quenching centers for the ¹D₂ transition, thus enhancing the red emission efficiency. Obviously. the mechanism of fluorescence enhancement for co-doped Lu³⁺ in CaTiO₃:Pr³⁺ differs from that for co-doped Al³⁺ in SrTiO₃:Pr³⁺, in which the increase of energy transfer efficiency between host and Pr³⁺ is considered [7]. In Fig. 4, the lifetimes and fluorescence intensities become saturated as the Lu₂O₃ concentration beyond 5%, suggesting the limited solubility of Lu₂O₃ in CaTiO₃:Pr³⁺. The fluorescence enhancement by the addition of La₂O₃ and Gd₂O₃ is also observed, as shown in the inset of Fig. 4.

In conclusion, the enhancement of red emission in $CaTiO_3$: Pr^{3+} phosphor has been obtained with addition of rare earth oxides Ln_2O_3 (Ln=Lu, La, Gd). Ln^{3+} incorporates into $CaTiO_3$ lattice by substituting either Ca^{2+} as donors or Ti^{4+} as acceptors. The substitution reduces the point defects related to Ca^{2+} and Ti^{4+} vacancies and thus enhances the red emission due to the increase of $^1D_{2-}^{3}H_4$ transition efficiency.

Acknowledgements

This work is financially supported by the 'One Hundred Talents Project' of Chinese Academy of Sciences, the MOST of China (Contract No. 2006CB601104), the

National Natural Science Foundation of China (Grant No. 10574128) and the 863 Project.

References

- [1] S. Okamoto, H. Yamamoto, Appl. Phys. Lett. 78 (2001) 655.
- [2] J.C. Park, H.K. Moon, D.K. Kim, S.C. Kim, K.S. Suh, Appl. Phys. Lett. 77 (2000) 2162.
- [3] A. Vecht, D.W. Smith, S.S. Chadha, C.S. Gibbons, J. Vac. Sci. Technol. B12 (1994) 781.
- [4] S.H. Cho, J.S. Yoo, J.D. Lee, J. Electrochem. Soc. 143 (1996) L231.
- [5] P.T. Diallo, P. Boutinaud, R. Mahiou, J.C. Cousseins, Phys. Stat. Sol. (a) 160 (1997) 255.
- [6] S. Itoh, H. Toki, K. Tamura, F. Kataoka, Jpn. J. Appl. Phys. Part 1 38 (1999) 6387.
- [7] S. Okamoto, H. Yamamoto, J. Appl. Phys. 86 (1999) 5594.
- [8] S. Okamoto, H. Yamamoto, J. Appl. Phys. 91 (2002) 5492.

- [9] T. Kyomen, R. Sakamoto, N. Sakamoto, S. Kunugi, M. Itoh, Chem. Mater. 17 (2005) 3200.
- [10] R.D. Shannon, Acta Cryst. A32 (1976) 751.
- [11] H. Kishi, N. Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, H. Ohsato, T. Okuda, Jpn. J. Appl. Phys. Part 1 38 (1999) 5452.
- [12] W. Jia, A. Perez-Andujar, I. Rivera, J. Electrochem. Soc. 150 (2003) H161.
- [13] P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, M. Bettinelli, Opt. Mater. 28 (2006) 9.
- [14] K. Takada, E. Chang, D.M. Smyth, Rare earth additions to BaTiO₃, in: J.B. Blum, W.R. Cannon (Eds.), Advances in Ceramics, vol.19, America Ceramics Society, Westerville, OH, 1987, p. P147.
- [15] S. Makishima, K. Hasegawa, S. Shionoya, J. Phys. Chem. Solids 23 (1962) 749.
- [16] J. Zhi, A. Chen, Y. Zhi, P.M. Vilarinho, J.L. Baptista, J. Am. Cera. Soc. 82 (1999) 1345.
- [17] M.H. Lin, H.Y. Lu, Mater. Sci. Eng. A335 (2002) 101.