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The free surfaces of nematic liquid crystals are studied based upon the molecular pair potential
model, which is spatially anisotropic and dependent on elastic constants of liquid crystals. The
study is based on the simple cubic lattice model with the aid of Monte Carlo simulation. An

elastic deformation is imposed, forming a hybrid cell-like nematic sample so that the
anchoring at free nematic interfaces (intrinsic anchoring) is well studied. It is found that the
preferred orientation at the free interface and the corresponding extrapolation length change

with the modification of potential parameters, but are not dependent on temperature.

1. Introduction

Based upon anisotropic dispersive forces, Maier and

Saupe [1, 2] constructed a molecular field theory for

nematic liquid crystals. Lebwohl and Lasher [3] made a

Monte Carlo simulation study of the model system

consisting of cylindrically symmetric particles confined

to the sites of a simple cubic lattice, using the Lebwohl–

Lasher pair potential (also called L–L pair potential).

However, this L–L potential only describes spatially

isotropic interaction and does not depend on the relative

position of the particles. In 1996, Gruhn and Hess

proposed a spatially anisotropic pair potential depend-

ing on the relative position of the particles [4]. It

approximately reproduces the elastic free energy density,

so that the parameters defining the pair potential can be

expressed in terms of the elastic constants. With that, a

Monte Carlo simulation on PAA in homogeneous

nematic phase was made by Romano [5]. In addition,

Romano has dealt with the above potential model on

2-demensional lattices using Mean Field Theory and

Monte Carlo simulations [6].
Liquid crystals in restricted geometries are of great

interest [7]. In confined nematic liquid crystals with a

large surface-to-volume ratio, the aligning effects of the

confining surfaces are crucial in determining the

equilibrium director configuration. Two major contri-
butions determine the equilibrium director configura-
tion. One is the nematic–substrate interactions and the
other is the incomplete anisotropic nematic–nematic
interactions in the vicinity of the sample surface. The
former is external anchoring and the later is intrinsic
anchoring (the anchoring at free nematic interfaces) [8].
The study of anchoring at free nematic interfaces is of
importance both in its own right and as a reference for
fully confined systems. One of the first experimental
investigations of free nematic liquid crystal (NLC)
surfaces observed the surface alignment using a light
reflection technique and found that p-azoxyanisole
(PAA) favours planar ordering [9]. Subsequent work
[10] confirmed this result for PAA. Later, another
experiment considered the intrinsic anchoring strength
and showed that the corresponding extrapolation length
is above 100 nm [11]. It is worth stressing that molecular
theories are able to model the free interfacial behaviors.
A number of simulations of the free interface of nematic
liquid crystals have been performed by different
potential models so as to investigate how the experi-
mental interfacial phenomena are related to the mole-
cular potentials. For example, intrinsic anchoring has
been analysed by means of a pseudo-molecular model
which uses the Maier–Saupe approximation for inter-
molecular interaction [12]. In addition, some other
studies concentrated on the Gay–Berne potential [13]
model but chose different parameters [14–16].*Corresponding author. Email: zyj513@hebut.edu.cn
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In this paper, we present a Monte Carlo study of

the free nematic interfacial behaviour based on the

Gruhn–Hess pair potential. We estimate the change of

the corresponding extrapolation length with the pair

potential parameters and the temperature. And we also

study the preferred orientation (the easy axis) at free

nematic interfaces. Furthermore, we compare our results

with some experiments and references.

2. Simulation models

Consider a nematic crystal (NLC) lattice model. From

[4], the nearest-neighbour pair potential takes the form

Uik ¼ " � P2ðaiÞ þ P2ðakÞ½ � þ � aiakbik �
1

9

� ��

þ�P2ðbikÞ þ � P2ðaiÞ þ P2ðakÞ½ �P2ðbikÞ

�
ð1Þ

r ¼ pi � pk, s ¼
r

jrj
, ai ¼ ui � s, ak ¼ uk � s,

bik ¼ ui � uk ð2Þ

" denotes a positive quantity setting scaled temperature,

i.e. T� ¼ kBT/". Here P2 is the second-order Legendre

polynomial; pi and pk are three-component dimension-

less lattice-point coordinates; ui and uk denote three-

component unit vectors describing the orientations of

the two particles; s is a unit vector pointing from the

centre of mass of molecule i to the centre of mass of

molecule k.
The potential parameters are related to the elastic

constants Ki (i¼ 1, 2, 3) as follows [5]

� ¼
1

3
� 2K1 � 3K2 þ K3ð Þ ð3aÞ

� ¼ 3� K2 � K1ð Þ ð3bÞ

� ¼
1

3
� K1 � 3K2 � K3ð Þ ð3cÞ

� ¼
1

3
� K1 � K3ð Þ ð3dÞ

where the factor � is defined by setting �¼�1. When

�¼�¼ �¼ 0 and �¼�1, the pair potential reduces to

the L–L model. The pair potential given by equation (3)

is called model I (M I). When dealing with Fréedericksz

transition by supposing perfect nematic order in a slab,

we can obtain equations (3b) (3c) (3d) but cannot find a

relation between � and Ki (see Appendix 2). However,

under three-dimensional period boundary conditions,

upon summing over all interacting pairs, the terms

�[P2((ai))þP2(ak)] in the pair potentials cancel out

identically [17], i.e. the value of � does not influence

the description of the NLC bulk properties. So our

result, in fact, is consistent with M I in three-

dimensional periodic boundary conditions [18]. In

addition, as seen from Appendix 3, M I does not

induce intrinsic anchoring at free interfaces in perfect

nematic order, which is therefore not suitable for studies

of intrinsic anchoring. Therefore, we cannot neglect �
when considering the behaviour of interfaces. We expect

a modification of � for M I to describe the behaviour of

nematic interfaces, i.e. �þ c instead of �. Intrinsic

anchoring is planar when c4 0, and homeotropic

when c5 0. When c is zero, it is M I. By doing this,

the bulk properties being described do not change.
There is another mapping scheme from the elastic free

energy density to the potential parameters (called

model II, i.e. M II) [19]. By M II, we can estimate the

preferred orientation at the free interface, i.e. intrinsic

anchoring is planar when K15K3 and homeotropic

when K14K3. So we also consider its results from

intrinsic anchoring [20] (see Appendix 3).
Anchoring effects usually are characterized within

phenomenological approaches by two parameters: the

easy axis and the anchoring strength W. They can also

be described by the extrapolation length b¼K/W

(K denoting the Frank elastic constant). In

our discussion, we define the extrapolation length

b¼K1/W. Here K1 is the splay elastic constant. An

elastic distortion is imposed to measure the anchoring

strength. The nematic–substrate interaction [21] is

given by

US ¼ �"SP2ðui � eÞ: ð4Þ

Here, e is the easy axis of the substrate and ui is a unit

vector along the symmetry axis of the molecule i which is

in the nearest layer from the substrate. We define a

dimensionless anchoring strength parameter as w¼ "s/".
For MII, as shown in Appendix 3, intrinsic anchoring

is planar when K15K3 and homeotropic when K14K3.

Experimental investigations of free nematic surfaces find

that PAA (K15K3) favours planar ordering [9].

Accordingly, we try to choose two liquid crystal

materials to make the numerical calculation. One is

PAA at 120�C [22]. The elastic constants are

K1 ¼ 7:0� 10�12 N, K2 ¼ 4:3� 10�12 N,

K3 ¼ 17:0� 10�12 N ð5Þ

which satisfy K15K3. Setting �¼�1, the pair potential

parameters are

�¼ 0:79039, �¼�1:0611, v¼�1, �¼�0:43668 ð6Þ
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Following [23], we choose a second liquid crystal
material which satisfies K14K3. The elastic constants
are

K1 ¼ 5:43� 10�12 N, K2 ¼ 2:51� 10�12 N,

K3 ¼ 4:07� 10�12 N: ð7Þ

We call this ‘X’ below. In the same way, the pair
potential parameters are

� ¼ 1:19935, � ¼ �4:25932, v ¼ �1, � ¼ 0:22042:

ð8Þ

We choose two NLC slabs in order to study the
intrinsic anchoring easy axis and the intrinsic anchoring
strength, as shown in figure 1(a) and (b). In figure 1(a),
the top (z¼ d) interface is taken to be a substrate with
strong external anchoring (w¼ 1) and the easy axis
e¼ (0,0,1). The bottom (z¼ 0) interface where the
intrinsic anchoring will be measured is a free interface
denoted by a dashed line. Figure 1(b) shows that the top
(z¼ d) interface is taken to be a substrate with strong
external anchoring (w¼ 1) and easy axis e¼ (1,0,0). The
bottom (z¼ 0) interface is also a free interface. We
simulate using the first slab (figure 1(a)) when the easy
axis of the free interface is planar and using the second
slab (figure 1(b)) when the easy axis of the free interface
is homeotropic, so that the two slabs can form hybrid
cell-like nematic samples.

3. Simulation aspects

Simulations have been performed on cubic samples
with a simulation box size 323. We have used periodic
conditions in the x and y directions, and considered
interactions only between nearest neighbours. For the
numerical calculations, the scaled temperature
T�(T� ¼ kBT/") is introduced. We apply the Metropolis
algorithm [24] to update the lattice and to find the state

of the lowest energy. Instead of comparing different

configurations, one (arbitrary) director distribution is
taken and the free energy Ep is calculated. Then we select

a random point of the configuration and calculate the

energy En, altered by a random amount and the energy

difference between old and new configuration, �E, is
calculated. If �E is negative, i.e. the altered director

field has a lower energy than the unaltered one, the

move is accepted. If �E is positive, i.e. the change of
director increases the energy, the move is not immedi-

ately discarded but accepted with a probability of

p ¼ e��E=kTB . This procedure is inspired by the way a

real liquid crystal reaches its thermal equilibrium. Our
equilibration runs take 105 cycles and production runs

take 105 cycles.
We need to calculate the director profile �(z) in order

to measure the extrapolation length. So we calculated
the second rank tensor after its reaching thermal

equilibrium.

Q�� zð Þ ¼

3 u�i u
�
i

D E
z
� ���

� �
2

: ð9Þ

Here, � and � can be x, y or z, and u�i refers to the �
component of the unit vector ui. First, the average h. . .iz
is performed over all particles for the current config-
uration in the layer centred at z. Then the current second

rank ordering tensor is diagonalized. Accordingly, the

director is identified by the eigenvector associated with

the eigenvalue possessing the largest magnitude, and the
second-order parameter is equal to the largest magni-

tude eigenvalue. Lastly, the director and the second-

order parameter are averaged over the production
Monte Carlo cycles.

4. Results and discussion

We have studied the intrinsic anchoring by setting
different low modification values. We can see from the

q

x

ui ui

z
z=d

(a)

z=0

z=d

z=0

q

x

z

(b)

Figure 1. Two NLC slabs (a) the top interface is a substrate with strong external hometropic anchoring and the bottom interface is
a free interface described with a dashed line. (b) the top interface is a substrate with strong external planar anchoring and the bottom
interface is a free interface. �¼ �(z) is the usual polar angle which is measured with respect to the z-axis.
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simulation results that there is no twist distortion

(except the simulation error of �5�). On the other

hand, the anchoring at the free interface is homeotropic

when c4 0 and planar when c5 0. This is consistent

with our prediction in perfect nematic order (see

Appendix 3). By M II, we have shown the experimental

result that the free interface for PAA favours planer

alignment. In addition, we also note the other result,

which is still not identified by experiments, i.e. the

intrinsic anchoring easy axis is homeotropic when

K14K3. In order to obtain the results according to M

II, we choose c¼�0.4, �0.2, 0.0 for PAA and c¼ 0.0,

0.1, 0.3 for X, which forms two kinds of hybrid

boundary conditions. For the hybrid boundary condi-

tions in figure 1(a), the Frank elastic theory gives the

equation of the bottom surface (z¼ 0)

1þ
K3

K1
cot2 � 0ð Þ

� �
d�

dz

� �
0

¼
W

K1

� �
0

cot � 0ð Þ ð10Þ

and we can obtain the equation of the bottom surface

(z¼ 0, figure 1(b))

1þ
K3

K1
cot2 � 0ð Þ

� �
d�

dz

� �
0

¼ �
W

K1

� �
0

cot � 0ð Þ: ð11Þ

According to equations (10) and (11), we can determine

(K1/W)0 simply by the director polar angle profile �(z)
and (d�/dz)0. We note that the nematic order parameter

is not a constant near sample boundaries in several

molecular layers. So the extrapolation of the profile

towards the surface must be calculated from far enough

in the bulk where the order parameter is a constant

(the order parameter difference between nearest layers

�Q� 0.1). Certainly, we also note that whenever

(K1/W)0 approaches d (for weak anchoring or in a thin

sample), (d�/dz)0 and consequently (K11/W)0 are accom-

panied by a significant systematic error.
As seen from the simulation results for PAA (table 1,

figure 2 and figure 3), the intrinsic anchoring favours

planer alignment. And the corresponding intrinsic

extrapolation length b is independent of the scaled

temperature, which is identical with the result in [8].

Moreover, b depends on the modification c, although

the bulk transition temperature (T�
NI¼ 1.368� 0.002

[5]) shows no dependence on it. As seen in table 1,

when c¼�0.2, b¼ (10.0� 0.1)a; when c¼�0.4,

b¼ (4.6� 0.1)a. It increases with increasing c.

The experiment shows that the intrinsic anchoring

strength is so weak that the corresponding extrapolation

length is above 100 nm [11]. Thus, we can obtain

quantitative agreement between our results and

experiments by modulating the value of c. Certainly,

we also note that b is very different when the

0 4 8 12 16 20 24 28 32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
(a) (b)

z (layers)

θ 
(z

)(
ra

d)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1.0

0 4 8 12 16 20 24 28 32

z (layers)

Q
 (

z)

Figure 2. NLC slab with homeotropic anchoring at z¼ 0 and c¼�0.4 for PAA. The scaled temperature: T� ¼ 1.20, T� ¼ 1.25,
T� ¼ 1.30 and T� ¼ 1.36 (circles, diamonds, triangles, and squares, respectively); (a) director; (b) order parameter.

Table 1. Extrapolation length b in units of lattice spacing a
for PAA and X at different modifications c.

c b(a)

PAAðT �
NI ¼ 1:368� 0:002Þ �0.2 10.0� 0.1

T� � 1.30 �0.4 4.6� 0.1
XðT �

NI ¼ 2:148� 0:002Þ 0.1 13.9� 0.05
T� � 2.06 0.3 3.5� 0.06
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nematic-isotropic (NI) transition temperature is
approached, since the layers near surfaces have reach
the isotropic phase.
For X (table 1, figures 4 and 5), the intrinsic

anchoring is homeotropic. And the intrinsic extrapola-
tion length b increases with modification c decreasing
and is independent of temperature. For X, when c¼ 0.1,
b¼ (13.9� 0.05)a; when c¼ 0.3, b¼ (3.5� 0.06)a. We
also simulate the transition temperature in the bulk
sample for X to be T�

NI¼ kBTNI/"¼ 2.148� 0.002.
When the NI transition temperature is approached,
b is also different.

Certainly, we also note that both PAA and X cannot
favour any orienting effects at the free interface when
c¼ 0. That is, M I cannot produce any orienting effects
at a free nematic surface. This is consistent with
the description in perfect nematic order [20] (see
Appendix 3).

Therefore, for different liquid crystal materials, we
can choose different modifications c, i.e. different
models to describe their properties. By doing this, we
can obtain the corresponding results with experiments
and predict undiscovered properties of nematic liquid
crystals.

0.0

0 4 8 12 16 20 24 28 32

0.2

0.4

0.6

0.8

q 
(z

)(
ra

d)

1.0
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Q

 (
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0.7

0.8

0.9

1.0(b)

0 5 10 15 20 25 30

z (layers)

Figure 4. NLC slab with planar anchoring at z¼ 0 and c¼ 0.1 for X. The scaled temperature: T� ¼ 1.90, T� ¼ 2.00, T� ¼ 2.10 and
T� ¼ 2.14 (circles, diamonds, triangles, squares, respectively); (a) director; (b) order parameter.

0.16(a) (b)
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Figure 3. NLC slab with homeotropic anchoring at z¼ 0 and T� ¼ 1.20 for PAA. The value of modification: c¼ 0, c¼�0.2 and
c¼�0.4 (circles, triangles, and diamonds, respectively); (a) director; (b) order parameter.
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Appendix

Study of distortions in NLC slabs based upon spatially
anisotropic pair potential

Distortions of NLC slabs are studied based upon

the spatially anisotropic pair potential model. The

perfect nematic order is assumed in the theoretical

treatment, which means the orientation of the molecular

long axis coincides with the director of liquid crystal

and the total free energy equals the total interaction

energy. We investigate three kinds of the basic

Fréedericksz transition and the director profiles at the

free interfaces.

A.1. Fundamental equations

In order to compare with M I, we introduce M II for

which the potential parameters related to the elastic

constants Ki are as follows [19]

� ¼
2

3
� K1 � K2ð Þ ðA1aÞ

� ¼ 3� �K1 þ 2K2 � K3ð Þ ðA1bÞ

� ¼ �
2

3
�K2 ðA1cÞ

� ¼ 0: ðA1dÞ

We study distortions of NLC slabs based upon M I and
M II (i.e. equations (1), (2), (3) and (A1)). Our NLC slab

is composed of n molecular layers (n is finite). The

surfaces of the slab are assumed to be normal to the z

axis so as to remove the homogeneity in the z direction

but not in the x� y plane. We label the molecular layers

parallel to the surfaces by j, with j¼ 1 and j¼ n denoting

the two surface layers. In the hypothesis of perfect

nematic order, ui coincides with the director of the liquid

crystals (the statistical average of ui) and the total free

energy coincides with the total intermolecular energy.

Furthermore, we assume the molecular orientation

changes only in the x� z plane. The director ui can be

parameterized by the polar angle � (the angle between

the director and the layer normal)

ui ¼ ðsin �i, 0, cos �iÞ: ðA2Þ

If the molecule i is in the jth layer, �i¼ �j. For the

molecule i and its six neighbours, the unit vector s is

given by

si1 ¼ ð�1, 0, 0Þ, si2 ¼ ð1, 0, 0Þ, si3 ¼ ð0, � 1, 0Þ

si4 ¼ ð0, 1, 0Þ, si5 ¼ ð0, 0, � 1Þ, si6 ¼ ð0, 0, 1Þ: ðA3Þ

Substituting equations (A2) and (A3) into equations (1)

and (2), we obtain the total energy per molecule in

12840 16 20 24 28 32
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1.6
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Figure 5. NLC slab with planar anchoring at z¼ 0 and T� ¼ 1.90 for X. The value of modification: c¼ 0, c¼ 0.1 and c¼ 0.3
(circles, triangles, and diamonds, respectively); (a) director; (b) order parameter.
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the jth layer

Here we have introduced two factors (1� �j1) and

(1� �jn), since molecules in the first layer have no lower

neighbouring molecules and molecules in the nth layer

have no upper neighbouring molecules.
If an external magnetic field H is applied to the NLC

molecular, the potential of a NLC molecule induced by

magnetic fields is [25]

fm ¼ �
1

2
	aðH � uiÞ

2
ðA5Þ

where 	a ¼ 	== � 	? is the magnetic anisotropy of NLC

molecule. If the molecule i is in the jth layer, equation

(A5) gives

fmð jÞ ¼ �
1

2
	�ðHx sin �j þHz cos �jÞ

2
ðA6Þ

The total energy of the sample (except the surface

interaction energy) is obtained by summing up the single

molecular energies given by equations (A4) and (A5)

over all j layers

F ¼ 

Xn
j¼1

1

2
Uð jÞ þ fmð jÞ

� �
ðA7Þ

where 
 is the molecular density per unit surface.

The total free energy given by equation (A7) should

be minimized with respect to all variables �j, leading to

the necessary condition

@F

@�j
¼ 0 ð j ¼ 1, 2, . . . , nÞ ðA8Þ

Substituting equation (A7) into equation (A8),

yields

A.2 Three kinds of basic Fréedericksz transition

A.2.1 The homeotropic-to-planar alignment transition

The two interfaces of the slab are taken to be substrates,

with infinitely strong homeotropic anchoring, i.e. there

are equations �l¼ 0 and �n¼ 0. So equation (A9)

degenerates to n� 2 equations. Supposing the external

magnetic field H applied to the NLC medium is parallel

to the x-axis (i.e. Hx¼H, Hz¼ 0) and �j is small enough

near the threshold magnetic fields, then

� " 6�þ 3�þ �ð Þ �j�1 � 2�j þ �jþ1

	 

þ 	aH

2�j ¼ 0:

ðA10Þ

Uð jÞ ¼
X6
k¼1

Uik ¼ 2" ð�þ �Þ 3 sin2 �j � 1
	 


þ � sin2 �j �
1

9

� �
þ �

� �
þ 2 �

1

9
�þ �� �� �

� �

þ ð1� �jnÞ �þ
3

2
� cos2 �j � �jþ1

	 

�
1

2
�

� �
3

2
cos2 �j þ cos2 �jþ1

	 

� 1

� �
þ � cos �j cos �jþ1 cos �j � �jþ1

	 

�
1

9

� ��

þ�
3

2
cos2 �j � �jþ1

	 

�
1

2

� ��
þ 1� �j1
	 


�þ
3

2
� cos2 �j � �j�1

	 

�
1

2
�

� �
3

2
cos2 �j þ cos2 �j�1

	 

� 1

� ��

þ � cos �j cos �j�1 cos �j � �j�1

	 

�
1

9

� �
þ �

3

2
cos2 �j � �j�1

	 

�
1

2

� �)
: ðA4Þ

" 3�þ 3�þ �ð Þ sin 2�j � 1� �jn
	 


"
3

2
� sin 2 �j � �jþ1

	 
 3

2
cos2 �j þ cos2 �jþ1

	 

� 1

� ��

þ
3

2
�þ

3

2
� cos2 �j � �jþ1

	 

�
1

2
�

� �
sin 2�j þ � cos �jþ1 sin 2�j � �jþ1

	 

þ
3

2
� sin 2 �j � �jþ1

	 
�
� 1� �j1
	 


� "
3

2
� sin 2 �j � �j�1

	 
 3

2
cos2 �j þ cos2 �j�1

	 

� 1

� ��
þ
3

2
�þ

3

2
� cos2 �j � �j�1

	 

�
1

2
�

� �
sin 2�j

þ � cos �j�1 sin 2�j � �j�1

	 

þ
3

2
� sin 2 �j � �j�1

	 
�
� 	a Hx sin �j þHz cos �j

	 

Hx cos �j �Hz sin �j
	 


¼ 0

ð j ¼ 1, 2, . . . , nÞ ðA9Þ
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If the two sides of equation (A10) are divided by a3 (a is

the lattice constant), we obtain

�" 6�þ 3�þ �ð Þ

a

�j�1 � 2�j þ �jþ1

a2
þ
	a
a3

H2�j ¼ 0: ðA11Þ

Furthermore, one notes that (�j�1� 2�jþ �jþ1)/a
2

corresponds to the difference expression of d2�/dz2. So
equation (A11) changes to the continuous equation

�" 6�þ 3�þ �ð Þ

a

d2�

dz2
þ
	a
a3

H2� ¼ 0: ðA12Þ

Setting

�a ¼
	a
a3

and K3 ¼
�" 6�þ 3�þ �ð Þ

a

we can obtain an equation corresponding with contin-

uous theory. Using the same procedure as in continuous

theory [26], equation (A12) can give the threshold

magnetic fields

H
ð3Þ
C ¼

�

d

ffiffiffiffiffiffi
K3

�a

s
ðA13Þ

where d is the thickness of the NLC slab, i.e. the

thickness of the NLC cell. We also note that �a is the

magnetic anisotropy of NLC medium if perfect nematic

order is assumed.

A.2.2 The planar-to-homeotropic alignment transition

We choose two substrates of the slab with infinitely

strong planer anchoring which favours planer align-

ment, i.e. the polar angles of j¼ 1 and j¼ n satisfy

�1¼�/2 and �n¼�/2. Equation (A9) can be degenerated

to n� 2 equations as above. Further, we assume the

external magnetic field H is parallel to the z-axis (i.e.

Hx¼ 0, Hz¼H). We can set �j¼ (�/2)� �j in order to

yield the threshold magnetic fields of the Fréedericksz

transition by linear analysis. If �j is small enough,

equation (A9) gives

" 3�� 3�� �ð Þ �j�1 � 2�j þ �jþ1

	 

þ 	aH

2�
j
¼ 0: ðA14Þ

According to the analysis as above, we obtain the

equations

" 3�� 3�� �ð Þ

a

�j�1 � 2�j þ �jþ1

a2
þ
	a
a3

H2� ¼ 0 ðA15Þ

" 3�� 3�� �ð Þ

a

d2�

dz2
þ
	a
a3

H2� ¼ 0 ðA16Þ

H
ð1Þ
C ¼

�

d

ffiffiffiffiffiffi
K1

��

s
ðA17Þ

where

�a ¼ 	a=a
3, K1 ¼

" 3�� 3�� �ð Þ

a
:

A.2.3 The simple twisted transition

We suppose that the NLC molecular layer is parallel to

the x� z plane as in the above discussion. We also

assume that the direction of molecules changes in the

x� y plane and that the angle between the molecular

long axis and the x-axis is 
. When the molecule i is in

the jth layer, ui ¼ ðcos
j, sin
j, 0Þ. The magnetic field is

in the x� y plane, i.e. H¼ (Hx, Hy, 0). Using the same

procedure that yielded equation (A9), we obtain

�
3

2
" �� �ð Þ 1� �jn

	 

sin 2 
j � 
jþ1

	 
�
þ 1� �j1
	 


sin 2 
j � 
j�1

	 


� 	a Hx cos
j þHy sin
j

	 

�Hx sin
j þHy cos
j

	 

¼ 0

ð j ¼ 1, 2, . . . , nÞ: ðA18Þ

In order to study the Fréedericksz transition of twist

deformation, we impose infinitely strong anchoring on

the x-axis, i.e. 
1 ¼ 
n ¼ 0. The external magnetic fields

are parallel to the y-axis, i.e. Hx¼ 0,Hy¼H. Assuming


j is small enough, we have

�3" �� �ð Þ 
j�1 � 2
j þ 
jþ1

	 

þ 	aH

2
j ¼ 0: ðA19Þ

As above, we obtain the equations

�3" �� �ð Þ

a


j�1 � 2
j þ 
jþ1

a2
þ
	a
a3

H2
 ¼ 0 ðA20Þ

�3" �� �ð Þ

a

d2


dz2
þ
	a
a3

H2
 ¼ 0 ðA21Þ

H
ð2Þ
C ¼

�

d

ffiffiffiffiffiffi
K2

�a

s
ðA22Þ
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Here

�a ¼ 	a=a
3, K2 ¼

�3" �� �ð Þ

a
:

A.2.4 Relations between the potential parameters and

the elastic constants

Using the relationship between the potential parameters

and the elastic constants, i.e. K1 ¼ ð" 3�� 3�� �ð ÞÞ=a,
K2 ¼ ð�3" �� �ð ÞÞ=a, and K3 ¼ ð�" 6�þ 3�þ �ð ÞÞ=a,
we can obtain the potential parameters denoted by the

elastic constants

� ¼ 3�ðK2 � K1Þ, ð23aÞ

� ¼
1

3
� K1 � 3K2 � K3ð Þ, ð23bÞ

� ¼
1

3
� K1 � K3ð Þ: ð23cÞ

Here �¼ a/3", which has the dimensions of length. This

is consistent with equations (3b), (3c) and (3d) for M I.
From the above, we cannot obtain the corresponding

relation for �. However, from [17], the terms

�[P2((ai))þP2(ak)] in the pair potentials cancel out

identically when in three-dimensional periodic boundary

conditions, i.e. the value of � does not influence the

description of the NLC bulk properties. So our model,

in fact, is consistent with M I in three-dimensional

periodic boundary conditions.

A.3 The director in the slab at the free surfaces

When there are no external magnetic fields and no

external substrate anchoring, one can demonstrate that

�j�1 ¼ �j ¼ �jþ1 ¼ � ðA24Þ

is the solution to equation (A9) for j¼ 2,3, . . . , n� 1. So

the two equations for j¼ 1 and for j¼ n reduce to

3�þ 3�þ �ð Þ sin 2� ¼ 0: ðA25Þ

Substituting equations (A24) and (A25) into equation

(A7) (external magnetic fields and external substrate

anchoring are cancelled out), we find that

F ¼ 
" n� 2ð Þ
2

3
�þ 3�

� �
þ 3�þ 3�þ �ð Þ sin2 �

�

þ 5�þ
4

9
�

� �
� 2 �þ �ð Þ� ðA26Þ

M I gives 3�þ 3�þ�¼ 0 and the director in the slab
is isotropic, the same result as given in the Labwohl–
Lasher model.

M II satisfies 3�þ 3�þ�¼� (K1�K3). If 3�þ 3�þ
�4 0 (i.e. K14K3), equation (A26) gives �¼ 0 (home-
otropic alignment to free surfaces) so that the total
energy of the sample is lowest. If 3�þ 3�þ�5 0 (i.e.
K15K3), �¼�/2 (planer alignment with the free
surfaces). For example, the molecules of PAA which
satisfies 3�þ 3�þ�5 0 align along the free surface. It
is consistent with the experimental observation [9].

By our model, 3�þ 3�þ�¼ 3���(2K1� 3K2þK3).
We set 3�þ 3�þ�¼ �, where � is a constant. When � is
positive, the free interfaces favour homeotropic align-
ment (�¼ 0); When � is negative, the free interfaces favor
planer alignment (�¼�/2); when � is zero (i.e. MI), the
free interfaces cannot produce any orienting effects. So
we can introduce a modification of � for MI, i.e. �þ c
instead of �, to describe the behaviour of interfaces. The
relation between � and c is �¼ 3c.
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