

Journal of Alloys and Compounds 454 (2008) 506-509

www.elsevier.com/locate/jallcom

Luminescence behavior of Eu³⁺ in CaSiO₃:Eu³⁺(Bi³⁺) and Sr₂SiO₄:Eu³⁺(Bi³⁺)

Jinghai Yang ^{a,b,*}, Lili Yang ^{a,b,c}, Wenyan Liu ^a, Yongjun Zhang ^a, Hougang Fan ^a, Yaxin Wang ^a, Huilian Liu ^{a,b,c}, Jihui Lang ^a, Dandan Wang ^a

^a Institute of Condensed State Physics, Jilin Normal University, Siping 136000, People's Republic of China
^b Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics,
 Chinese Academy of Sciences, Changchun 130033, People's Republic of China
^c Graduate School of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Received 27 January 2007; received in revised form 14 February 2007; accepted 15 February 2007 Available online 20 February 2007

Abstract

CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺ and Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺ were synthesized by the sol–gel method, and their structure and luminescence characteristics were investigated. The XRD results showed that the symmetry of Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺ structure, which is similar to the non-close-packing orthogonal structure of K₂SiO₄ is higher than that of CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺ perovskite structure belonging to the monoclinic system. From the excitation spectra of CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺ and Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺, it can be seen that the main peaks located at 267 nm, 383 nm, 395 nm, 457 nm and 359 nm, which correspond to the charge transfer band of Eu³⁺–O²⁻, absorption transition of $^7F_{0.1}$ – 5G_J , $^7F_{0.1}$ – 5L_6 , 7F_1 – 5D_3 and $^7F_{0.1}$ – 5D_2 of Eu³⁺ ions and 3P_1 – 1S_0 of Bi³⁺ ions, respectively. When the CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺ samples were excited with wavelength of 359 nm, the emission intensity of electronic dipole transition at 609 nm originated from 5D_0 – 7F_2 of Eu³⁺ ions was stronger than magnetic dipole transition at 587 nm originated from 5D_0 – 7F_1 of Eu³⁺ ions mainly due to the lower symmetry and the distortion of the structure. However, the opposite situation appeared in the emission spectrum of Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺. In addition, the intensity comparison of each emission peaks between the emission spectra of CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺ and Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺ showed that the energy transfer efficiency between Bi³⁺ ions and Eu³⁺ ions in Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺ is apparently higher than that in CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺.

Keywords: Rare earth alloys and compounds; Sol-gel processes; Optical properties; Optical spectroscopy

1. Introduction

A study of the luminescence of rare earth solid state materials is an interesting research field in both rare earth physics and chemistry. Europium is a special element in the lanthanides: besides the common properties of rare earth elements, it exhibits the property of valence fluctuation, i.e., the valence state is divalent or trivalent, and it has different luminescence characteristics due to the different valences. The electron configuration of Eu³⁺ ions is 4f⁶. The red light emission of Eu³⁺ ions has been comprehensively applied in color television, panel display, cathode ray tube and many fluorescent powders of three primary colors [1–3]. Thus, it is necessary to study the luminescence

characteristic of Eu³⁺ ions for application. It is well-known that optical properties of rare earth luminescence materials are greatly influenced by the matrix. According to the free rare earth ion, electric dipole transitions between 4f energy levels are forbidden, which is the result of parity selection rules. However, when the rare earth ions are located in the lattices, parity selection rules is possibly out of work and then electric dipole transitions between 4f energy levels appear. It has been reported that Eu³⁺ ions exhibit favorable luminescent behavior in many matrixes [4–8]. In order to obviously show the effect of matrixes on the Eu³⁺, Sr₂SiO₄ and CaSiO₃ were chosen as the matrices of Eu³⁺, and Bi³⁺ played the role of sensitizer ions. The samples of CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺ and Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺ were synthesized by the sol-gel method. The structure and luminescence characteristics of the samples were investigated, and the relationship between the structure and luminescence properties was also discussed in this article.

^{*} Corresponding author. Tel.: +86 434 3290009; fax: +86 434 3294566. E-mail address: jhyang1@jlnu.edu.cn (J. Yang).

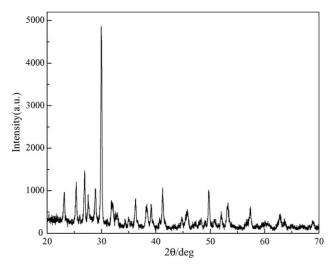


Fig. 1. XRD pattern of CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺.

2. Experimental

The initial materials in this experiment included $Eu_2O_3(A.R.)$, ethanoic acid(A.R.), $Bi(NO_3)_3(A.R.)$, $Ca(NO_3)_2(A.R.)[Sr(NO_3)_2(A.R.)]$, $Si(OC_2H_5)_4(TEOS)(A.R.)$, $HNO_3(A.R.)$ and $C_2H_5OH(A.R.)$. The appropriate stoichiometric proportions of $CaSiO_3:Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ or $Sr_2SiO_4:Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ were weighed and their solution were mixed. The pure $CaSiO_3:Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $Sr_2SiO_4:Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ were synthesized under the following conditions: the mol ratio of acetic acid and TEOS was 0.1; the bulk factor of H_2O and TEOS was 0.5; the mixed solution were laid in water bath at $65\,^{\circ}C$; the precursors were presintered at $700\,^{\circ}C$ for $3\,h$ and sintered at $900\,^{\circ}C$ for $4\,h$.

The structures of above samples were determined by a D/max-IIIC copper rotating-anode X-ray diffractometer. The emission and excitation spectra measurements were performed on the PE LS55 spectrometer.

3. Results and discussion

3.1. Crystal structure

3.1.1. Crystal structure of CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺

The XRD pattern of $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ was shown in Fig. 1 indicated that $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ sample has perovskite structure belonging to monoclinic system, and its space group is $P2_1/a$. Calculated by the XRD data, the sizes of the samples sintered at 900 °C are around 2 μm. In the unit cell of perovskite CaSiO₃, Si⁴⁺ ions locate at the center of monoclinic cube; O²⁻ ions locate at the six face centers of monoclinic cube; and Ca²⁺ ions located at the eight apex angles of cube. Octahedrons are formed by the Si⁴⁺ ions and their nearest neighbor O²⁻ ions, and their coordination number is six. Icosahedrons are constructed by Ca²⁺ ions and their nearest neighbor O²⁻ ions, and their coordination number is 12. The coordination numbers between Si⁴⁺ ions and Ca²⁺ ions are both eight. Because the doping content was low, the crystal structure did not change after doping the Eu³⁺ ions and Bi³⁺ ions. For the luminescence material of CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺, Eu³⁺ acts as the luminescence center and Bi³⁺ plays the role of sensitizer ions, which have been reported in our previous articles [9].

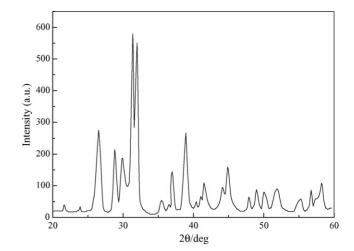
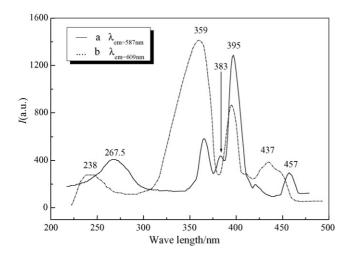


Fig. 2. XRD pattern of Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺.


3.1.2. Crystal structure of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$

The sample of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ has the same structure with Sr₂SiO₄ (Fig. 2), which is similar to the non-closepacking orthogonal structure of K₂SiO₄ [10]. In this structure, Sr²⁺ ions locate at two kinds of unequivalent lattice sites, and their coordination numbers are 9 and 10, respectively. O²⁺ ions locate at three kinds of unequivalent lattice sites, and its space group is D_{2h}. Si⁴⁺ ions locate at the center of the oxygen tetrahedron. Therefore, it can be seen that the structure of Sr₂SiO₄ has the higher symmetry compared with that of CaSiO₃. When the Eu³⁺ and Bi³⁺ are introduced into the Sr₂SiO₄ structure, they take the place of the Sr²⁺. The crystal structure experienced no changes due to the low doping content of the Eu³⁺ ions and Bi³⁺ ions, which can be seen from Fig. 2. For the luminescence material of Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺, Eu³⁺ acts as the luminescence center and Bi3+ plays the role of sensitizer ions, which have been reported in our previous articles [10].

3.2. Luminescence characteristics

3.2.1. Excitation spectra of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$

Excitation spectra of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ were shown in Fig. 3. The monitoring wavelengths were 587 nm for Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and 609 nm for $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$, respectively. From the excitation spectrum of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$, Fig. 3(a), it can be seen that the main peaks located at 267 nm, 359 nm, 383 nm, 395 nm, 437 nm and 457 nm. The excitation peak of 267 nm corresponded to the charge transfer band of $Eu^{3+}-O^{2-}$, which was caused by the electrons transfer from 2p orbits of O^{2-} ions to 4f shells of Eu^{3+} ions. The excitation peak of 383 nm, 395 nm, 437 nm and 457 nm, respectively corresponded to the absorption transition of $^7F_{0,1}-^5G_J$, $^7F_{0,1}-^5L_6$, $^7F_1-^5D_3$ and $^7F_{0,1}-^5D_2$ of Eu^{3+} ions, in which the luminescent intensity of 395 nm was the strongest. In addition, there was another excitation peak located at 359 nm, which originated from $^1S_0-^3P_1$ of Bi^{3+} ions.

Compared with the excitation spectrum $CaSiO_3:Eu_{0.08}^{3+}Bi_{0.002}^{3+}$, the peaks located at 359 nm and 395 nm in the spectrum of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ (Fig. 3(a)) were almost at their original position. However, it can be seen that a red shift of the charge transfer band of Eu³⁺-O²⁻ appeared in the Fig. 3. The corresponding peak of Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺ shifted to the red side for about 30 nm. The reason for the red shift is that the electronegative difference between Eu³⁺ and O²⁻ in Sr₂SiO₄ is weaker than that in CaSiO₃ due to the stronger covalent characteristic of Sr₂SiO₄. As a result, the electron transition energy between Eu^{3+} and O^{2-} decreases. That is to say, the electron of O^{2-} is prone to transfer to Eu^{3+} near them. Therefore, the charge transfer band of Eu³⁺-O²⁻ in the excitation spectrum of Sr₂SiO₄:Eu_{0.08}³⁺Bi_{0.002}³⁺ red shifted for about

It also can be seen that the peak located at 359 nm has the strongest intensity in Fig. 3. So the wavelength of 359 nm was chosen to detect the emission spectra of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$.

3.2.2. Emission spectra of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$

Emission spectra of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ were shown in Fig. 4 with the excitation wavelength of 359 nm. When the samples were excited with wavelength of 359 nm, there were three emission peaks in the emission spectra of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$, i.e. 398 nm, 587 nm and 609 nm, originated from transition of $^3P_1^{-1}S_0$ of Bi^{3+} ions, $^5D_0^{-7}F_1$ and $^5D_0^{-7}F_2$ of Eu^{3+} ions, respectively.

 $^5D_0-^7F_2$ of Eu $^{3+}$ ions was forced electronic dipole transition and $^5D_0-^7F_1$ of Eu $^{3+}$ ions was magnetic dipole transition. In particular, forced electronic dipole transition originated from $^5D_0-^7F_2$ of Eu $^{3+}$ ions only appears when Eu $^{3+}$ ions locates in non-reversion center lattices, and magnetic dipole transition originated from $^5D_0-^7F_1$ of Eu $^{3+}$ ions only appears when Eu $^{3+}$ ions locates in reversion center lattices. So the ratio

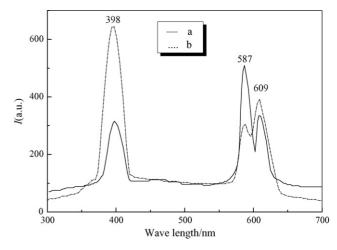


Fig. 4. Emission spectra of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$. (a) Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and (b) $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$.

of emission intensity of these two peaks directly showed the symmetry of Eu³⁺ ions in crystal lattices [11,12]. According to Fig. 4(a), the emission intensity of the peak located at 587 nm was stronger than that at 609 nm. So it can be concluded that more Eu3+ ions located in reversion center lattices of the Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ structure. However, the opposite situation can be seen in the Fig. 4(b), which shows more Eu³⁺ ions located in non-reversion center lattices of the CaSiO₃:Eu_{0.08}³⁺Bi_{0.002}³⁺. It is, may be, explained by the following two actions. According to the structure of CaSiO3 and Sr₂SiO₄, the Eu³⁺ and Bi³⁺ ions replaced Ca²⁺ or Sr²⁺ with the different valance, which resulted in the crystal lattice distortion after the doping process. On the other hand, the symmetry of Ca²⁺ in CaSiO₃ crystal structure was lower than that of Sr²⁺ ions in Sr₂SiO₄ crystal structure. Under the action of these two factors, Eu³⁺ ions deviated from symmetry center, and the deviation degree was higher than that in Sr₂SiO₄. Therefore, the parityforbidden transition of 4f-4f was mostly released in CaSiO₃. As a result, the emission intensity of electronic dipole transition at 609 nm originated from ${}^5D_0 - {}^7F_2$ of Eu³⁺ ions was stronger than magnetic dipole transition at 587 nm originated from $^5D_0-^7F_1$ of Eu³⁺ ions in CaSiO₃ crystal.

Compared with the emission intensity of $CaSiO_3:Eu_{0.08}^{3+}$ $Bi_{0.002}^{3+}$, the emission intensity of $Sr_2SiO_4:Eu_{0.08}^{3+}$ $Bi_{0.002}^{3+}$ located at 398 nm is about 50% lower, the emission intensity of the peak located at 587 nm was obviously enhanced, and the emission intensity of the peak located at 609 nm decreased appreciably. These results showed that Bi^{3+} ions transferred more energy to Eu^{3+} ions in $Sr_2SiO_4:Eu_{0.08}^{3+}$ $Bi_{0.002}^{3+}$ than that in $CaSiO_3:Eu_{0.08}^{3+}$ $Bi_{0.002}^{3+}$. That is to say, the energy transfer efficiency between Bi^{3+} ions and Eu^{3+} ions in $Sr_2SiO_4:Eu_{0.08}^{3+}$ $Bi_{0.002}^{3+}$ is apparently higher than that in $CaSiO_3:Eu_{0.08}^{3+}$ $Bi_{0.002}^{3+}$.

4. Conclusions

In summary, the luminescence characteristics of Eu³⁺ ions, such as emission intensity and efficiency, are strongly influenced by the structure of matrices. Through the investigation of the

excitation and emission spectra of Sr_2SiO_4 : $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$ and $CaSiO_3$: $Eu_{0.08}^{3+}Bi_{0.002}^{3+}$, it can be concluded that the matrix of Sr_2SiO_4 with higher symmetry structure is more propitious to the luminescence characteristics of Eu^{3+} ions.

Acknowledgements

We would like to thank financial support of the program of State Key Program for Basic Research of China (grant 2003CD314702-02) and the science and technology bureau of Jilin province (20060518) and gifted youth program of Jilin province (20060123).

References

- [1] C.F. Wu, W.P. Qin, G.S. Qin, D. Zhao, J.S. Zhang, S.H. Huang, S.Z. Lv, H.Q. Liu, H.Y. Lin, Appl. Phys. Lett. 82 (2003) 520.
- [2] J. Dexpert-Ghys, R. Mauricot, M.D. Faucher, J. Lumines. 69 (1996) 203.
- [3] B. Bihari, H. Eilers, B.M. Tissue, J. Lumines. 75 (1997) 1.
- [4] J.W. Haynes, J.J. Brown Jr., J. Electrochem. Soc. 115 (1968) 1060.
- [5] G. Blasse, J. Chem. Phys. 51 (1969) 3529.
- [6] B. Li, Z.N. Gu, J.H. Lin, M.C. Su, Chem. J. Chin. Univ. 22 (2001) 1.
- [7] Z.H. Jia, H. Li, Z.R. Ye, Chem. J. Chin. Univ. 23 (2002) 352.
- [8] W. Xu, W. Su, S. Cui, et al., Chin J. High Press. Phys. 2 (1988) 237.
- [9] J. Yang, W. Liu, L. Yang, Chem. J. Chin. Univ. 27 (2006) 254.
- [10] J.h. Yang, J. Gong, H.g. Fan, et al., Chem. Res. Chin. 19 (2003) 450.
- [11] B. Li, Y. Bai, M. Tang, et al., Sci. Rep. 3 (1985) 186.
- [12] S.Y. Zhang, Chin. J. Lumin. 4 (1983) 31.