
Information Processing Letters 108 (2008) 204–209
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An improved particle swarm optimization algorithm for flowshop
scheduling problem

Changsheng Zhang a,∗, Jigui Sun a, Xingjun Zhu a, Qingyun Yang b

a Key Laboratory of Symbol Computation and Knowledge Engineering of the Ministry of Education, Changchun 130012, China
b Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 February 2008
Received in revised form 30 April 2008
Available online 24 May 2008
Communicated by L. Boasson

Keywords:
Flow shop scheduling problem
Particle swarm optimization
Makespan
Combinatorial problems

The flowshop scheduling problem has been widely studied and many techniques have
been applied to it, but few algorithms based on particle swarm optimization (PSO) have
been proposed to solve it. In this paper, an improved PSO algorithm (IPSO) based on the
“alldifferent” constraint is proposed to solve the flow shop scheduling problem with the
objective of minimizing makespan. It combines the particle swarm optimization algorithm
with genetic operators together effectively. When a particle is going to stagnate, the
mutation operator is used to search its neighborhood. The proposed algorithm is tested on
different scale benchmarks and compared with the recently proposed efficient algorithms.
The results show that the proposed IPSO algorithm is more effective and better than
the other compared algorithms. It can be used to solve large scale flow shop scheduling
problem effectively.

Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.
1. Introduction

Exact algorithms [1,2] can hardly be designed to solve
large sequencing and scheduling problems. In general,
these problems belong to the class of combinatorial op-
timization problems characterized as NP-hard [3] and
therefore the right way to process is with heuristic tech-
niques [4–6]. It consists in the assignment of a set of
jobs N = { J1, . . . , Jn}, each of which consists of a set
of operations J j = {O j1, . . . , O jm} to a set of machines
M = {M1, . . . , Mm}. The parameter ti, j,1 � i � n,1 � i � m
denotes the processing time of job i on machine j. Op-
erations belonging to a job are ordered with respect to
the precedence constraint O jk � O j,k+1. Each machine can
process only one job at a time. The given technological
machine sequence is identical for all jobs, and it is as-
sumed that the sequence of jobs on machines is also the
same. A schedule may therefore be represented as a per-
mutation π = {π1, . . . ,πn} of jobs which can be mapped

* Corresponding author. Tel.: +86-0431-85166487.
E-mail address: zcs820@yahoo.com.cn (C. Zhang).
0020-0190/$ – see front matter Crown Copyright © 2008 Published by Elsevier
doi:10.1016/j.ipl.2008.05.010
into a schedule defining completion time C jk for the op-
eration O jk . The completion time C j of job J j is then the
completion of last operation O jm, C j = C jm . The objective
function for the FSSP corresponds to the minimization of
the makespan in this paper. So the FSSP model can be de-
fined as follows:

Cπ11 = tπ11 (1)

Cπ j 1 = Cπ j−11 + tπ j 1 ∀ j ∈ {2, . . . ,n} (2)

Cπ1k = Cπ1k−1 + tπ1k ∀k ∈ {2, . . . ,m} (3)

Cπ jk = max{Cπ j−1,k, Cπ jk−1} + tπ jk (4)

∀ j ∈ {2, . . . ,n}, k ∈ {2, . . . ,m}
Cmax = max C j (5)

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Dr. Eberhart and
Dr. Kennedy in 1995 [7,8]. It is inspired by the social
behavior of bird flocking and possessing the properties
of easy implementation and fast convergence. Clerc and
Kennedy researched on the explosion stability and conver-
gence in a multi-dimensional complex space of the particle
B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:zcs820@yahoo.com.cn
http://dx.doi.org/10.1016/j.ipl.2008.05.010


C. Zhang et al. / Information Processing Letters 108 (2008) 204–209 205
swarm in [9] and Trelea studied convergence analysis and
parameter selection of the particle swarm optimization
algorithm in [10]. Eberhart and Shi compared genetic algo-
rithm with particle swarm optimization in [11]. In recent
years there have been a lot of reported works focused on
the modification PSO such as in [9,12] and other optimiza-
tion algorithms in [13,14] to solve continuous optimization
problems, but its being used to solve FSSP does not have
rich literatures. By far, only several papers have been de-
livered to solve the FSSP based on PSO algorithm [15–17],
and the experimental results show that they are more
efficacious than the algorithms based on GA [18] and con-
structive heuristics [19–21], but these algorithms are still
suffered from the problem of premature convergence and
easily trapped into local optimum.

Recently, van den Bergh [22] found a dangerous prop-
erty of the PSO algorithm: if a particle’s current position
coincides with the global best position, the particle will
only move away from this point if its previous velocity
and the inertia weight are non-zero. If their previous ve-
locities are very close to zero, then all particles will stop
moving once they catch up with the global best particle,
which may lead to premature convergence of the algo-
rithm. To pre-actively counter this behavior in a particle
swarm, an improved particle swarm optimization algo-
rithm is proposed in which the shift mutation operator is
used to search its neighborhood when a particle is going
to stagnate. This cannot only improve the particle’s explo-
ration capability but also make the swarm escape from
local minima. Furthermore, a fast makespan computation
method based on matrix is designed to improve the algo-
rithm speed. Finally, the IPSO algorithm is tested on dif-
ferent scale benchmarks and compared with the recently
proposed efficient algorithms.

2. IPSO algorithm

One of the key issues when designing the PSO algo-
rithm lies in its solution representation where particles
bear the necessary information related to the problem do-
main on hand. FSSP is set in a discrete space. It is obvious
that standard PSO equations cannot be used to generate
a discrete job permutation since positions and velocities
are real-valued. So the most important issue in applying
PSO successfully to FSSP is to develop an effective problem
mapping and solution generation mechanism. If these two
mechanisms are devised successfully, it is possible to find
good solutions for a given optimization problem in accept-
able time.

2.1. The IPSO model

For a flow shop scheduling problem consisting of n
jobs, according to the character of FSSP, if the ith particle’s
current position Xi = {xi1, xi2, . . . , xin}, xij ∈ N and velocity
V i = {vi1, vi2, . . . , vin}, vij ∈ N are both denoted as per-
mutations of all jobs which must satisfy the “alldifferent”
constraint [23], then the crossover operator can be used to
redefine the model of the original PSO algorithm [8]. Since
the behavior of a particle is mainly influenced by its mo-
mentum term, cognitive component and social component.
So we have the following iterative formulas:

V i(k + 1) = V i(k) ⊗ Pgbest ⊗ Pibest (6)

Xi(k + 1) = Xi(k) ⊗ V i(k + 1) (7)

where ⊗ denotes the crossover operation. By analyzing the
above equations, it can be obtained that, each particle fol-
lows two “best” positions, the current global best position
Pgbest and the personal best position Pibest . Like the origi-
nal PSO algorithm, it possesses the properties of fast con-
vergence, simple to compute and easy to implement as the
later experiments showed. However, because the velocities
of particles rapidly approach to zero that each particle’s
velocity and current position have the same permutation,
the above iterative formulas exhibit the disadvantage of
easy to be trapped in local optima like the similar parti-
cle swarm optimization algorithm proposed in paper [16].

From Eqs. (6) and (7), we can get the following two
sights: First, when a particle’s personal best position is the
same as the current global best position and its current
speed is close to zero, it is going to stagnate; second, when
the achieved new speed V i(k + 1) is the same as the cur-
rent position Xi(k), the particle will not move. In order to
improve the algorithm’s performance, for the first case, we
make the particle search the neighborhood of the current
global position as Eq. (8) shows, and for the second case,
the neighborhood of the particle’s current position is ex-
plored as Eq. (9) shows.

Xi(k + 1) = mutation
(

Pgbest(k)
)

(8)

Xi(k + 1) = mutation
(

Xi(k)
)

(9)

For a flow shop problem with n jobs, a schedule π =
{π1, . . . ,πn} can be looked as a point of n dimensions
space. Given a job πi,1 � i � n, a new point or sched-
ule can be got by inserting it into any other positions. The
overall points found through this way form the neighbor-
hood of point π . Obviously, it includes n(n − 2) + 1 points.
So, the shift mutation [24] can be used to perform the
neighborhood search process.

2.2. Fitness computation

In order to speed up the IPSO algorithm, a fast fit-
ness computation method is devised in this paper. For a
scheduling problem containing n jobs and each job con-
sisting of m operations, processing time matrix of a valid
schedule S = 〈s1, s2, . . . , sn〉 is defined as

T =

⎡
⎢⎢⎢⎢⎣

t1,s1 t1,s2 . . . t1,sn

t2,s1 t2,s2 . . . t2,sn

.

.

.
.
.
.

.

.

.
.
.
.

tm,s1 tm,s2 . . . tm,sn

⎤
⎥⎥⎥⎥⎦

where si ∈ J , t jk is the processing time of job j on ma-
chine k,1 � i � n,1 � j � m.

In the IPSO algorithm, each particle’s fitness value is ex-
pressed by the makespan of the corresponding schedule. It
can be computed as follows: First, get the processing time
matrix P of the permutation through swapping the column



206 C. Zhang et al. / Information Processing Letters 108 (2008) 204–209
of original processing time matrix. Second, update the ma-
trix P according to the following rule.

ti, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t1,1 if i = 1, j = 1

t1, j−1 + t1 j if i = 1, j 	= 1

ti−1,1 + ti,1 if i 	= 1, j = 1

ti−1, j + ti, j if ti−1, j > ti, j−1

ti, j−1 + ti, j if ti−1, j < ti, j−1

(10)

Then, the resulted value of element pm,n is the makespan
of the schedule.

2.3. Algorithm description

To ensure convergence to desirable, better makespans
in a reasonable amount of time, the initialization proce-
dure in the IPSO algorithm is based on the NEH algo-
rithm [24] and can be explained as follows:

1. The total processing times for the jobs on the m ma-
chines are calculated:

Pi =
m∑

j=1

pij, i = 1, . . . ,n

2. The jobs are sorted in descending order of Pi to form
an ordered list and make it as each particle’s current
position.

3. For each particle, pick two random jobs and exchange
them for the two first jobs from its current position.
Then, the first two jobs are taken and the two possible
schedules containing them are evaluated.

4. For each particle, take job i, i = 3, . . . ,n and find the
best schedule by placing it in all possible i positions
in the sequence of jobs that have already scheduled.
The obtained best sequence would be selected for the
next iteration.
Furthermore, each particle’s personal best position is
initialized the same as its current position. Give each
particle a maximal initial velocity being equal to the
reverse order of its current position, calculate its fit-
ness and set the global best. The termination criterion
for the iterations is determined according to whether
the max generation is reached or the maximum com-
putation time has arrived. The framework of IPSO al-
gorithm can be described as follows:

Algorithm IPSO (improved PSO algorithm)
Input: MaxG (the maximal generation number).

T (the maximum computation time)
N (size of the population)

Output: S (the obtained best schedule).

Step 1: Initialization.

Generate an initial population POP with N particles. For
each particle, set its current position as its current personal
best position and set the current generation number k = 0
and t = T.

Step 2: Update the current global best position Pgbest .
for each particle Pi[k]do
if Cmax(Pibest) <Cmax(Pgbest) then

Pgbest = Pibest endif;
endfor.

Step 3: Stopping criterion.

if(g==MaxG or t==0) then
output the obtained global best position and stop

endif.

Step 4: Swarm evolution.

for each particle Pi[k]do
//update the speed and position of particle i
if (Vi[k] ==Xi[k])&&(Pibest == Pgbest) then

Xi[k + 1] = mutation(Pgbest);
Vi[k + 1] = Vi[k];

else
Vi[k + 1] = Vi[k] ⊗ Pgbest ⊗ Pibest[k];
if Vi[k + 1] == Xi[k] then

Xi[k + 1] = mutation(Xi[k]);
else

Xi[k + 1] = Vi[k + 1]⊗ Xi[k];
endif.

endif.
//update personal best
if Cmax(Xi[k + 1]) < Cmax(Pibest) then

Pibest = Xi[k + 1];
endfor.

Step 5: g = g + 1; t = t − 1; goto step 2.

Generally, the definition of convergence is that a system
or process reaches a stable state. For the population based
optimization algorithm, the convergence of algorithm can
be defined in terms of either individual or the whole
swarm. F. Van den Bergh gave the convergence definition
of original PSO in [22]. Based on it, the convergence defi-
nition for the proposed IPSO algorithm can be described as
follows: For a given flow shop scheduling problem P and
its corresponding problem search space Ω, gbest(t) ∈ Ω is
best position found in time t or in tth generation, gbest∗ is
a fixed position in Ω . The convergence is written as,

lim
t→∞ gbest(t) = gbest∗

It implies that, if gbest output by IPSO does not change
any more, then the convergence is achieved. If the gbest
is the global best position, then the algorithm attains the
global best convergence. Otherwise, the algorithm is stuck
in local optima.

3. Validation on benchmarks

In this part, we provide a comprehensive experimental
evaluation and comparison of the proposed IPSO algorithm
with other powerful methods. The well known standard
benchmark set of Taillard [24] that is composed of 120 in-
stances ranging from 20 jobs and five machines to 500 jobs
and 20 machines is used. To compare the performance of



C. Zhang et al. / Information Processing Letters 108 (2008) 204–209 207
the IPSO algorithm with known techniques from the liter-
ature, we compared it with nine classical or recent, well-
performing algorithms. These various methods are listed in
Table 1.

Each algorithm is run twenty independent times for the
selected different scale test instances with the swarm size
N = 60 for all the problems except NEHT algorithm, for
which only single run was done since it is a deterministic
algorithm. The stopping criterion for all algorithm alterna-
tives in the experiment is set to a maximum computation
time of n*(m/2)*120 milliseconds or a fixed fitness evalua-
tion numbers computed as n*m*500 for each test instance.
Setting the time limit in this way allows more compu-
tation time or fitness evaluation numbers as the number
of jobs or the number of machines increases. We imple-
mented them using the C++ language. They were all exe-
cuted on my PC with Pentium(R) processor (2.8 GHz) and
1 GB memory. Regarding the performance measures, we
measure for each instance the average relative percentage
deviation (RPD). They are computed as follows:

RPD =
L∑

i=1

(
Soli − Optimal

Optimal
· 100

)/
L

Where L is the run times, Soli is the makespan obtained
for the ith running of an algorithm and Optimal is the
known minimum makespan for the problem or the low-
est known upper bound for Taillard’s instances as of April
2005. The comparative results in terms of computation
time and fitness evaluation numbers for all the algorithms
(averaged by instance size) are provided in Tables 2 and 3.

Table 1
List of various methods used in the comparison

Method Time

NEH with the improvements of Taillard (NEHT) [24] 1990
Genetic algorithm of Ruize et al. (GA-RMA) [25] 2006
Simulated annealing of Osman and Potts (SA_OP) [26] 1989
Tabu search algorithm of Widmer and Herz (SPIRIT) [27] 1989
Genetic algorithms of Andreas (GA_AN) [28] 2004
Genetic algorithm of Aldowaisan and Allahvedi (GA_AA) [29] 2003
Hybrid genetic algorithm of Murata et al. (GA_M1T) [30] 1996
Novel particle swarm optimization of Lian (NPSO) [17] 2008
Ant colony optimization algorithm of Betul (ACO) [31] 2008
From Table 2, we can see that the NEHT constructive
heuristic yields an ARPD of 3.35%, which is much bet-
ter than the meta-heuristics Spirit and GA_AN. Moreover,
NEHT is very quick; it takes only 186 ms on average to
solve the largest instances with 500 jobs and 20 machines.
In fact, recent studies have confirmed the superiority of
NEHT over most recent constructive heuristics. The meta-
heuristics SPIRIT and GA_AN obtain rather poor results,
even worse than NEHT. Much better performance is ob-
tained by SA_OP, even though it starts the search from a
random solution and not a NEHT generated one. SA_OP
is one of the easiest to implement algorithms and it can
reach a level of performance comparable to several ge-
netic algorithms including GA_AA and GA_MIT which is a
fairly complex GA that is hybrid with local search. Among
the compared genetic algorithm, the best performance is
obtained by GA_RMA algorithm which includes several
population operators and initiates with NEH algorithm. It
achieved an ARPD 1.13%, better than the recently proposed
ACO algorithm. There are two algorithms that manage less
than a 1% ARPD. They are NPSO, and the proposed IPSO
algorithm. The IPSO gets the smallest ARPD and much bet-
ter than the other compared algorithms under the same
elapsed time as a stopping criterion. The ARPD obtained
by IPSO algorithm is also smallest than others when com-
pared in terms fitness evaluation numbers which can be
seen from Table 3. Compared with Table 2, the obtained
ARPDs of NEHT and GA_AN changes little, the ARPDs ob-
tained by NPSO and IPSO both become a little worse, and
the ARPDs achieved by other compared algorithms get
smaller. This is mainly for that some local search strat-
egy is used or the population needs sorted often in these
algorithms but in NPSO and IPSO algorithm, only simple
operation is used and in essence the evolution speed of
PSO based algorithm is faster the algorithm based on GA.
The population of NPSO algorithm used in this paper is
also initialized using the NEH algorithm like IPSO.

In order to check whether these observed differences in
the RPD values are indeed statistically significant, we per-
formed an analysis of variance. This analysis has a single
factor which is the type of algorithm with 10 levels. The
reposed variable is 120 relative percentage deviation (RPD)
Table 2
Average relative percentage deviation over the optimum solution or lowest known upper bound for Taillard’s instances obtained by the methods evaluated
with the running time

Instance NEHT GA_RMA SA_OP SPIRIT GA_AN GA_AA GA_MIT ACO NPSO IPSO

20 × 5 3.35 0.24 1.17 3.91 3.95 0.94 0.84 0.62 0.21 0.04
20 × 10 5.02 0.62 2.69 5.41 5.18 1.70 1.96 2.04 0.37 0.23
20 × 20 3.73 0.37 2.21 4.51 4.26 1.31 1.66 1.32 0.24 0.19
50 × 5 0.84 0.06 0.45 1.99 2.01 0.37 0.30 0.21 0.01 0.05
50 × 10 5.12 1.79 3.71 5.95 6.54 3.60 3.50 2.06 1.85 1.05
50 × 20 6.26 2.67 4.57 7.64 7.74 4.66 5.07 3.56 1.59 1.83
100 × 5 0.46 0.07 0.33 0.98 1.35 0.26 0.25 0.17 0.03 0.03
100 × 10 2.13 0.65 1.52 3.13 3.86 1.65 1.54 0.85 0.37 0.39
100 ×20 5.23 2.78 4.79 6.65 8.15 4.92 4.99 3.41 2.19 2.06
200 ×10 1.43 0.43 1.08 2.08 2.78 1.08 1.14 0.55 0.37 0.32
200 × 20 4.41 2.35 4.11 5.00 7.05 3.95 4.19 2.84 1.92 1.80
500 × 20 2.24 1.43 2.34 9.87 4.76 2.06 2.68 1.66 1.19 1.16

Average 3.35 1.12 2.42 4.76 4.80 2.21 2.34 1.60 0.86 0.76



208 C. Zhang et al. / Information Processing Letters 108 (2008) 204–209
Table 3
Average relative percentage deviation over the optimum solution or lowest known upper bound for Taillard’s instances obtained by the methods evaluated
with the fitness evaluation numbers

Instance NEHT GA_RMA SA_OP SPIRIT GA_AN GA_AA GA_MIT ACO NPSO IPSO

20 × 5 3.35 0.20 1.12 4.58 3.94 0.84 0.54 0.58 0.26 0.04
20 × 10 5.02 0.62 2.63 5.43 5.18 1.42 1.73 0.96 0.42 0.36
20 × 20 3.73 0.31 2.26 4.69 4.23 1.25 1.36 0.86 0.34 0.28
50 × 5 0.84 0.06 0.45 2.06 2.01 0.36 0.23 0.12 0.25 0.08
50 × 10 5.12 1.45 3.58 5.71 6.54 3.41 3.42 1.95 2.46 1.31
50 × 20 6.26 2.50 4.51 7.52 7.76 4.68 4.73 2.81 2.58 2.06
100 × 5 0.46 0.06 0.34 0.95 1.35 0.26 0.22 0.12 0.05 0.08
100 × 10 2.13 0.53 1.50 3.12 3.86 1.59 1.45 0.86 0.59 0.39
100 × 20 5.23 2.51 4.69 6.56 8.25 4.81 4.65 3.32 2.68 2.53
200 × 10 1.43 0.40 0.94 1.96 2.66 0.99 1.01 0.45 0.61 0.38
200 × 20 4.41 2.16 3.96 5.03 6.93 3.95 3.95 2.19 2.27 2.20
500 × 20 2.24 1.39 2.26 6.47 4.79 1.96 2.41 1.58 2.38 1.37

Average 3.35 1.01 2.35 4.50 4.79 2.13 2.14 1.31 1.24 0.92

Fig. 1. Means plot of the relative percentage deviation (RPD) for the Taillard benchmark and the algorithms tested.
values for each algorithm. The response variable of the ex-
periment is then calculated with the following expression:

RPD = Somesol − Optimal

Optimal
× 100

where Somesol is the solution obtained by a given algo-
rithm alternative on a given instance with the elapsed time
as a stopping criterion. The response variable is, there-
fore, the average percentage increase over the lowest upper
bound for each instance. The mean plot for the single fac-
tor is depicted in Fig. 1. From the results we see that our
proposed IPSO algorithm produces statistically better re-
sults than all others. There are no statistically significant
differences between SPIRIT and GA_AN. The GA_MIT and
SA_OP algorithms are also almost equivalent.

In the previous evaluation we have considered many of
the best known metaheuristics, including several GAs as
well as other recent methods. However, the comparison
does not consider some of the state-of-the-art metaheuris-
tics with local search like such as and HGA_RMA [25].
There are several reasons for this. There exists no local
search strategy in the proposed IPSO algorithm and a re-
implementation of them will take long coding time. Based
on the above experiments, we can obtained that, the pro-
posed IPSO algorithm reaches and even surpasses the per-
formance of the compared state-of the-art algorithms at a
computation time penalty. Another advantage of the IPSO
algorithm is that it is much simpler and only includes two
parameters.

4. Conclusions

In this paper, the IPSO algorithm is proposed for the
flow shop scheduling problem which combines the PSO
with the crossover and mutation operators, and a fast
fitness computation method based on matrix is devised
to speed up it. The IPSO algorithm is tested on differ-
ent scale problems and compared with the recently pro-
posed algorithms. The results show that the IPSO algo-
rithm has obtained better performance and possesses bet-
ter convergence property than the compared algorithms.
Another good quality of the IPSO algorithm is that it con-
tains only two parameters, the swarm size and the max
generation, avoiding the time consuming work of param-
eter turning. There are a number of research directions
that can be considered as useful extensions of this re-
search. The proposed algorithm in this paper using single
crossover operator with single mutation operator, maybe



C. Zhang et al. / Information Processing Letters 108 (2008) 204–209 209
using several crossovers and various mutation operators is
more effective for flow shop scheduling problem. Only the
two point crossover operator is included in this paper, the
other crossover operators should be considered and com-
pared next. Furthermore, applying the proposed algorithm
to solve other combinatorial optimization problems is also
possible in further research.

References

[1] C. Dimopoulos, A.M.S. Zalza, Recent developments in evolution-
ary computation for manufacturing optimization: problems, solu-
tions, and computations, IEEE Transactions on Evolutionary Compu-
tation 4 (2) (2000) 93–113.

[2] J.M.S. Valente, R.A.F.S. Alves, An exact approach to early/tardy
scheduling with release dates, Computers & Operations Re-
search 32 (11) (2005) 2905–2917.

[3] M. Garey, D. Johnson, R. Sethy, The complexity of flow shop and job
shop scheduling, Mathematics of Operations Research 1 (2) (1976)
117–129.

[4] A. Sadegheih, Scheduling problem using genetic algorithm, simulated
annealing and the effects of parameter values on GA performance,
Applied Mathematical Modelling 30 (2) (2006) 147–154.

[5] C. Rajendran, H. Ziegler, Ant-colony algorithms for permutation flow-
shop scheduling to minimize makespan/total flowtime of jobs, Euro-
pean Journal of Operational Research 155 (2004) 426–438.

[6] J. Grabowski, M. Wodecki, A very fast tabu search algorithm for the
permutation flow shop problem with makespan criterion, Computers
& Operations Research 31 (11) (2004) 1891–1909.

[7] R. Eberhart, J. Kennedy, A new optimizer using particle swarm the-
ory, In: Proc of the Sixth International Symposium on Micromachine
and Human Science, Nagoya, Japan, 1995, pp. 39–43.

[8] J. Kennedy, R. Eberhart, Particle swarm optimization. In: IEEE Int.
Conf. on Neural Networks, Perth, Australia, 1995, pp. 1942–1498.

[9] S. He, Q.H. Wu, J.Y. Wen, J.R. Saunders, R.C. Paton, A particle swarm
optimizer with passive congregation, BioSystems 78 (2004) 135–147.

[10] I.C. Trelea, The particle swarm optimization algorithm: convergence
analysis and parameter selection, Inform. Process. Lett. 85 (6) (2003)
317–325.

[11] R.C. Eberhart, Y. Shi, Comparison between genetic algorithms and
particle swarm optimization, in: Evolutionary Programming VII: Pro-
ceedings of the Seventh Annual Conference on Evolutionary Pro-
gramming, Springer-Verlag, Berlin, San Diego, CA, 1998, pp. 611–618.

[12] Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang, De-Xian Huang, Improved
particle swarm optimization combined with chaos, Chaos, Solitons &
Fractals 25 (2005) 1261–1271.

[13] M.J. Ji, H.W. Tang, Application of chaos in simulated annealing, Chaos,
Solitons & Fractals 21 (2004) 933–941.

[14] Z. Lu, L.S. Shieh, G.R. Chen, On robust control of uncertain chaotic
systems: a sliding-mode synthesis via chaotic optimization, Chaos,
Solitons & Fractals 18 (2003) 819–827.
[15] K. Rameshkumar, R.K. Suresh, K.M. Mohanasundaram, Discrete par-
ticle swarm optimization (DPSO) algorithm for permutation flow-
shop scheduling to minimize makspan, in: Proc. ICNC 2005, LNCS,
vol. 3612, 2005, pp. 572–581.

[16] Lian Zhigang, Xingsheng Gu, Bin Jiao, A similar particle swarm op-
timization algorithm for permutation flowshop scheduling to min-
imize makespan, Applied Mathematics and Computation 175 (1)
(2006) 773–785.

[17] Lian Zhigang, Xingsheng Gu, Bin Jiao, A novel particle swarm op-
timization algorithm for permutation flowshop scheduling to mini-
mize makespan, Chaos, Solitons & Fractals 35 (5) (2008) 851–861.

[18] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison-Wesley, Reading, MA, 1989.

[19] C. Koulamas, A new constructive heuristic for flow-shop scheduling
problem, European Journal of Operational Research 105 (1998) 66–
71.

[20] J.N. Gupta, A functional heuristic algorithm for flowshop scheduling
problem, Operational Research Quarterly 22 (1) (1971) 39–47.

[21] M. Nawaz, E. Enscore Jr., I. Ham, A heuristics algorithm for the m-
machine, n-job flowshop sequencing problem, Omega 11 (1) (1983)
91–95.

[22] F. van den Bergh, An analysis of particle swarm optimizers, PhD the-
sis, Department of Computer Science, University of Pretoria, Pretoria,
South Africa, 2002.

[23] L. Lauriere, A language and a program for stating and solving combi-
natorial problems, Artificial Intelligence 10 (1) (1978) 29–127.

[24] E. Taillard, Some efficient heuristic methods for the flow shop se-
quencing problem, European Journal of Operational Research 47 (1)
(1990) 65–74.

[25] R. Ruiz, C. Maroto, J. Alcaraz, Two new robust genetic algorithms for
the flowshop scheduling problem, OMEGA, the International Journal
of Management Science 34 (2006) 461–476.

[26] I. Osman, C. Potts, Simulated annealing for permutation flow-shop
scheduling, OMEGA, The International Journal of Management Sci-
ence 17 (6) (1989) 551–557.

[27] M. Widmer, A. Hertz, A new heuristic method for the flow shop se-
quencing problem, European Journal of Operational Research 41 (2)
(1989) 186–193.

[28] A.C. Nearchou, The effect of various operators on the genetic search
for large scheduling problems, Int. J. Product. Economy 88 (2004)
191–203.

[29] T. Aldowaisan, A. Allahvedi, New heuristics for no-wait flowshops
to minimize makespan, Computers and Operations Research 30 (8)
(2003) 1219–1231.

[30] T. Murata, H. Ishibuchi, H. Tanaka, Genetic algorithms for flowshop
scheduling problems, Computers and Industrial Engineering 30 (4)
(1996) 1061–1071.

[31] B. Yagmahan, M.M. Yenisey, Ant colony optimization for multi-
objective flow shop scheduling problem, Computers & Industrial En-
gineering 54 (3) (2008) 411–420.


	An improved particle swarm optimization algorithm for flowshop scheduling problem
	Introduction
	IPSO algorithm
	The IPSO model
	Fitness computation
	Algorithm description

	Validation on benchmarks
	Conclusions
	References


