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A comprehensive noise model about digital camera which is a main component of SHWFS is constructed,
including the readout noise, the photon shot noise, the quantization noise and the response un-unifor-
mity. Based on the noise model, the spot centroid errors caused by each kind of noise are analyzed,
respectively. And then the synthetic error from all the noise is calculated. The result demonstrates that
the limit of the spot centroid accuracy is 1% pixels. At last, the crossing error caused by the high order
diffraction spots is analyzed. It is approximately proportional to the secondary spots number. So the
structure of the microlens array must be optimized together with the digital camera when designing
SHWFS.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

At the beginning of the 20th century, German astrophysicist
Johannes Hartmann constructed a screen with a series of holes
to test the optics of a large aperture telescope. The technology,
Hartmann Screen test, remained unchanged for nearly 70 years.
Until 1971, Roland Shack, who was involved in the study of mea-
suring the telescope wavefront error in atmosphere, propounded
to replace the holes in the Hartmann Screen with lenses in order
to overcome the problem of extremely low illumination [1,2]. For
the first time, the idea of measuring the dynamic wavefront er-
ror, at the same time an image of the satellite or star is taken
by the ground-based telescope, seemed to be feasible. From then
on, the Shack–Hartmann wavefront sensors (SHWFS) were
widely used in the astronomical telescopes, and adaptive optics
stepped in rapid development stage [3,4]. In 1994, Junzhong
Liang firstly used SHWFS to measure the eye aberration and then
realized the high-resolution retinal imaging through adaptive op-
tics [5,6].

While SHWFS is a necessary instrument for adaptive optics, it is
also widely used in other domain, such as optical calibration and
alignment, metrology of thin transparent optics, beam diagnoses
and so on [7–10]. And there are several important advantages to
use SHWFS as the optical testing instrument. Unlike other beam
diagnostic systems, SHWFS does not require moving parts. The
incident radiation does not have to be coherent. The instrument
provides a measure of both the irradiance and phase distributions
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of the incident light which is very useful for optical alignment. The
SHWFS acquires all of the information from a single digital camera
image, so short exposure times can be used to reduce the sensitiv-
ity to vibration and pulsed sources may be analyzed and aligned.
The processing of the camera image is straightforward, simple,
and may readily be performed on PC at high speed. Furthermore,
except for the peak-to-valley (PV) wavefront deviation and the
Root-Mean-Square (RMS) wavefront error, the point-spread-func-
tion (PSF), modulation transfer function (MTF) and Zernike wave-
front decomposition can also be performed.

SHWFS can be configured for a variety of aperture sizes, wave-
lengths, sensitivities and dynamic ranges for different applica-
tions. There is great difference between the wavefront sensors
used in astronomical adaptive optics and the ones for optical test-
ing. In astronomical adaptive optics, it requires high light sensitiv-
ity to overcome low illuminant, and high working speed to realize
the dynamic detection and real-time compensation for the wave-
front aberration. And the low light signal-to-noise-ratio must be
taken into consideration when designing and analyzing the perfor-
mance of the wavefront sensor for adaptive optics. It was demon-
strated a good choice to use a small quantity of pixels filling a sub-
aperture of the wavefront sensor, such as 2 � 2 cells method [11].
This can improve the measurement precision and speed simulta-
neously. But in optical testing, the light source can be chosen or
designed according to the requirement, especially the energy
and wavelength. So it is feasible to improve the measurement pre-
cision further for the optical testing SHWFS by optimizing its con-
figuration and the data processing method. In the paper, the
factors affecting the measurement precision are analyzed, respec-
tively and synthetically, in order to improve the performance of
SHWFS.
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Fig. 1. The schematic configuration of the S–H wavefront sensor.
Fig. 3. The generation of the pixel signal. Each square denotes a pixel.
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2. Theory and method

The Shack–Hartmann wavefront sensor usually comprises a
lenslet array and a CCD or CMOS camera as is shown in Fig. 1.
The lenslet array consists of a two-dimensional array of a few hun-
dred lenslets, all with the same diameter and the same focal length.
Each lenslet of the array is a sub-aperture of the wavefront sensor
and several to several tens camera pixels fill in each sub-aperture.
If the incident beam is ideal plane wavefront, the light spots will
locate the center of each sub-apertures, otherwise the spots will
be off centering corresponding to the local wavefront slope. And
the wavefront can be decomposed from the local slopes through
the least-square method. So the measurement precision of the
wavefront is determined by the local slope precision, which is af-
fected by the lenslet focal length and the center accuracy of the
spot fundamentality. Although the longer focal length is helpful
for increasing the local slope precision, the spot centroid accuracy
will decay if the focal length is too long. So there would be a trade-
off between the lenslet focal length and the center accuracy. Firstly
the spot centroid calculation error will be analyzed.

@W
@x

����
i

¼ xt
i � x0

i

f
@W
@y

����
i

¼ yt
i � y0

i

f
ð1Þ

Ideally the centroid position of a light spot with profile I(x,y)
should be calculated as

Xc ¼
R

Iðx; yÞx dxR
Iðx; yÞ dxdy

Yc ¼
R

Iðx; yÞy dxR
Iðx; yÞ dxdy

ð2Þ

For an ideal photodetector array of finite size and quantity, the
detected centroid position of light spot would be

Xc ¼
XL;M

i;j

PijXi=
XL;M

i;j

PijYc ¼
XL;M

i;j

PijYj=
XL;M

i;j

Pij ð3Þ

where Pij ¼ dij � a
R

DSij Iðx; yÞ dxdy and DSij is the area of the (i,j)
pixel, dij denotes the photon response non-uniformity (PRNU) of
the camera, a denotes the photon-to-signal ratio which consists of
the quantum efficiency and the A/D conversion factor, L and M
are the number of pixels in X- and Y-direction, respectively within
a sub-aperture.

Furthermore, take the photodetection noise into consider, for-
mal (3) would be
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The discrete sampling from formula (2) to formula (3) will in-
duce sampling error, quantization error and PRNU error for the
centroid calculation. And the photodetection noise in formula (4)
contains photon shot noise, readout noise and dark current noise.

Although many authors have analyzed the centroid calculation
error [11–13], they paid more attention on the low-light-level
wavefront measurement and did not take other factors into consid-
eration, such as PRNU and quantization error. In order to minimize
the numerical simulation error, we analyzed all the error factors
based on the camera signal noise model shown in diagram Fig. 2
[14]. And the first kind and zero order Bessel function is used to de-
script the distribution of the spot intensity instead of Gauss func-
tion. But the environment background noise is not considered
because it can be eliminated by improving the light source and
the experiment environment.

Fig. 3 illustrates the numerical simulation method. A two-
dimension intensity distribution with the ideal center (x0, y0) is
simulated from the Bessel function. It is divided by the simulated
pixels as is shown in Fig. 3a and the intensity is integrated in each
pixel area to generate the pixel signal shown in Fig. 3b. Then cen-
troid (xc, yc) of the spot is calculated by formula (3). So the centroid
calculation error can be estimated by the difference between (xc,
yc) and (x0, y0). The unit used in the simulation is unit ‘‘1”, that is
to say the spot position, spot size, pixel position and pixel size
are all with the same unit ‘‘1”. But the centroid error is expressed
with unit pixel. For example, pixel size 10, FWHM of the spot 15
and centroid error 1% pixel means that the spot is mainly sampled
by two pixels and the absolute centroid error is 0.1.

3. Simulation result

The sampling error is analyzed firstly in order to determine the
proper sample ratio for analyzing the other factor errors. In our cal-
culation, the FWHM of the spot is set 15, the sampling sub-window
is �90 to +90 and the generated ideal spot center moves from
(�35, 0) to (35, 0). By changing the pixel size, the sampling error
is calculated (shown as Fig. 4). The error curve behaves like the co-
sine function, which is mainly caused by the sparse discrete sam-
pling and the Bessel type of the light spot distribution. Further
Noisy 
signal 

ark Nread Nq

nal capture in digital camera.



Fig. 4. Sampling error of the centroiding in X-direction. k is the ratio between the
spot FWHM and the pixel size.

Table 1
The key parameters of the simulated camera.

Pixel size 12
PRNU 1–2%
Full well capacity 16,000e
Quantum efficiency 50%
Readout noise 16e (type)
Dark current 50e/pixel/s
Dynamic range 1000
Digital depth (adjustable) 8bit, 10bit, 12bit
Readout noise 16e

Table 2
The statistical results of the centroid errors. Unit (pixels).

No. Max (%) Min (%) Std (%)

(a) �0.71 0.69 0.22
(b) �1.06 1.25 0.38
(c) �0.56 0.53 0.20
(d) �10.30 8.90 3.73
(e) �0.58 0.62 0.19
(f) �0.72 0.63 0.21
(g) �0.16 0.21 0.05
(h) �0.06 0.05 0.02
(i) �2.40 2.20 0.72
(j) �1.95 2.43 0.65
(k) �2.03 2.37 0.66
(l) �1.43 1.34 0.41
(m) �1.09 1.06 0.39
(n) �1.06 1.08 0.39
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analysis illustrates that, when the spot is sampled symmetrical by
the surrounding pixels the error is zero and vice versa. It can be
seen that, as the sample ratio k (the ratio of the spot FWHM and
the pixel size) increases, the sampling error decreases sharply.
When the ratio is 0.75, the maximum error is about 0.3% pixel.
When the ratio is 1 and 1.25, the maximum error is only
3.1 � 10�5 pixel and 1.3 � 10�5 pixel, respectively which can be
neglected. In order to test the sampling error for k = 1.25 furtherly,
we calculate the sampling error for 500 random points (center po-
sition of the simulated spot) locating in the square area (�30, �30)
to (30, 30) as is shown in Fig. 5a. The sampling errors are expressed
in the form of histogram in Fig. 5b. So in the following, we choose
k = 1.25 (pixel size 12) to calculate the other noise errors. And the
spot is mainly sampled by 4 � 4–5 � 5 pixels for k = 1.25.

Because the other noise is closely relative with the characters of
camera, a simulated camera is constructed with the key parame-
ters listed in Table 1. All the parameters are not critical for the sci-
entific camera commonly used now. And in the following
calculation, the maximum pixel signal is set 15,000e, a little smal-
ler than the full well depth.

Due to the quantum character of light, the capture of photons is
a Poisson process that arises from random fluctuations in sampling
when discrete quanta are measured. So the photon shot noise is the
nature of light. The standard deviation of the photon shot noise is
equal to the square root of the average number of photons, i.e.
rph ¼

ffiffiffiffi
N
p

; where N is the average number of photons shooting in
one pixel. Then the signal-to-noise-ratio for shot noise is
SNRph ¼

ffiffiffiffi
N
p

. As the number of photons increases, the SNR will be
enhanced. In this simulation step, the maximum signal after inte-
gration is set 30,000 photons (corresponding 15,000e) and the sig-
nals in other pixels are zoomed with the same scale. Then the shot
Fig. 5. The distribution of the light spot center and the sampling error. The histogram co
minimum value and the standard deviation is 1.29 � 10�5, �1.31 � 10�5, 2.1 � 10�6 pix
noise is generated according to each signal value and added into
the signal. The centroid error was calculated for 500 points ran-
domly falling in the area (�30, �30)–(30, 30) and the result is
shown in Fig. 6a.

The photon response non-uniformity is caused by variations in
pixel geometry and substrate material of the photoreceptor. Since
PRNU is caused by the physical properties of a sensor, it is nearly
impossible to eliminate and usually considered a normal charac-
teristic of the sensor array. Typically the non-uniformity is only
1–2%. In the section, all the other factors are neglected and each
signal is multiplied by a random parameter which normally dis-
tributes in the range 0.98–1.0 or 0.99–1.0 for PRNU 2% and 1%.
The result for 500 times calculation is shown in Fig. 6b and c. When
the PRNU is 2%, the maximum possible error reaches 1% pixels. And
the maximum error reduces to 0.5% pixels when PRNU is 1%.

Readout noise is generally defined as the combination of the
remaining circuitry noise between the photoreceptor and the
ntains both the centroid errors in X-direction and Y-direction. The maximum value,
els, respectively.



Fig. 6. The centroid error for different conditions. From (a) to (h), every one is only about one factor. From (i) to (n), all the factors are analyzed synthetically and every one
corresponded to a combination of quantization level and PRNU. The statistical results of centroid error are listed in Table 2.
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ADC circuitry including pixel reset noise, thermal noise, and other
minor contributors like conductor shot noise. Dark current noise
has the similar statistical character as readout noise and usually
it is very small. For example, if the exposure times is 0.02 s, the



Fig. 8. The diffraction pattern of microlens array with focal length 6 mm and
diameter 0.15 mm. (a) is the ideal pattern and (b) is the pattern with random
wavefront local slope. The maximum departure of the spots for pattern (b) is 30 lm,
1/5 of the microlens diameter.
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dark current noise is only 1e typically which can be neglected. So it
is added into the readout noise in the section. Fig. 7 shows the sig-
nals after the readout noise added. The impact of readout noise is
so severely that the error reaches 10% pixels as is shown in Fig. 6d.
The main reason is that the useful signal distributes in only a small
part of the whole window while the readout noise is full of the
window. So the threshold method is adoptable [11]. The signal va-
lue which is smaller than the threshold is not taken into the cen-
troid calculation. When the threshold is set 50, about three times
of the noise, the error is only 0.6% pixels as is shown in Fig. 6e.
Some other thresholds are also calculated, and the improvement
is similar as threshold 50e. But the improvement will decay obvi-
ously, if the threshold is smaller than two times of the noise or lar-
ger than five times.

The conversion of non-trivial analogue signal to the digital do-
main results in rounding errors during the quantization process.
For signal variations much larger than the quantization step, the
noise added to the signal is approximate

r2
q ¼

q2

12
ð5Þ

where q is the quantizing step.
In this section, we do not take the method of adding random

noise into the signal directly, but process the raw pixel signal after
integration like the real digital camera. Firstly all the pixel signal is
zoomed with the same ratio to make the maximum signal is
15,000e, near the full capacity. Then the signal is divided by 62.5.
At last rounding operation is taken on the signal. This is just the
A/D conversion process for 8bit quantizing level. Ten bit and
12bit level quantizations are also calculated and the results are
shown in Fig. 6f–h. As the quantizing level increases, i.e. the quan-
tizing step decreases, the centroid error induced by only quantiza-
tion noise diminishes.

From the results we can see that, as single error factor the PRNU
(2%) is prominent, photon shot noise is secondly. And the centroid
errors caused by other kind of noise individually are all smaller
than 1% pixels. Although the error caused by readout noise can
reach 10% pixels, it is only 0.6% pixels with a proper threshold.

At last the centroid calculation accuracy is estimated syntheti-
cally, that is all the kinds of noise are taken into calculation simul-
taneously. Because there are three quantization levels (8bit, 10bit
and 12bit) and two levels about PRNU (1% and 2%), each combina-
tion of the two factors is calculated. What’s more, the threshold
method is still used to reduce the impact of readout noise. The re-
sults are shown as Fig. 6i–n. If the PRNU is 2%, the centroid error is
above 2% pixels no matter what level the quantization is. When the
PRNU is 1%, the centroid errors for 10bit and 12bit quantization re-
duce to 1% pixels. Further calculation demonstrates that, when the
sampling ratio is 1 or larger than 1.25 (from 1.5 to 4 is calculated),
the synthetic centroid error is almost the same as k = 1.25. And if
Fig. 7. The signals with readout noise added.
the maximum photon number falling in one pixel is set more than
1,00,000, which means that the SNRph enhances, the maximum
centroid error could reduce to 0.9% pixels.

4. Further consideration

The error of wavefront local slope is also associated with the fo-
cal length of the lenslet. For the same spot centroid accuracy, the
longer the focal length, the smaller the slope error will be. But with
the focal length increasing, the size of the main diffraction spot and
the crossing of the high order diffraction spots will also increase,
which will induce crossing error for the spot centroid calculation
[15]. Fig. 8 shows the diffraction pattern of a 5 � 5 microlens array
with focal length 6 mm and sub-aperture diameter 0.15 mm.
When calculating the crossing error, a group of random wavefront
local slope (25 different values) was set to the lenslet array. So, the
light spot will depart from the center of each microlens as shown
in Fig. 8b. The centroid error was calculated only for the central
9 microlens and the root-mean-square-value of the 9 error values
was calculated as the mean error.

The crossing error is calculated for simulated microlens with
diameter 0.1 and 0.15 mm as is shown in Fig. 9. It should be
emphasized that,when calculating the spot centroid the sub-win-
dow method is used to reduce the impact of high order diffraction
spots [11]. The secondary spots number N between two main spots
can be written as:

N ¼ D2

kf�2 where D is the diameter of the microlens, f is the focal
length and k is the wavelength which is set 0.6 lm in the calcula-
tion. As the secondary spot number decreases, i.e. the focal length
lengthens, the crossing error increases. So there is a tradeoff be-
tween the focal length of the lenslet and the spot centroid calcula-
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Fig. 9. The crossing error caused by high order diffraction spots.
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tion precision. Besides, the dynamic range of SHWFS will reduce
when the focal length is longer. All of these must be kept in mind
when constructing a SHWFS for high precision measurement.

5. Conclusion

As a main component of SHWFS, the digital camera is also the
main error origin for wavefront measurement. So a comprehensive
noise model about the digital camera is constructed, including the
main noise origins such as photon shot noise, PRNU, readout noise
and so on. The impact of each kind of noise is analyzed, respec-
tively. The results demonstrated that the discrete sampling error
could not be neglected unless the sampling ratio is larger than 1.
The response uniformity is a key factor for the spot centroid calcu-
lation and the uniformity of 1% will be sufficient for realizing 1%
pixels centroid accuracy. Although the error caused by 8bit quan-
tization noise is smaller than 1% pixels, using higher quantization
level would be a good choice and 10bit digital depth camera is very
common now. Besides, it is necessary to use threshold method to
diminish the impact of readout noise and by the method the cen-
troid accuracy can be improved by a factor of 10.

Because the wavefront measurement precision is determined
by the accuracy of wavefront local slope, which is proportional to
the focal length of lenslet, increasing the focal length is helpful
for improving the precision. However, the crossing error will in-
crease and the dynamic range will decrease as the focal length
lengthens. So the structure of lenslet array must be optimized
when designing SHWFS.
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