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Abstract:  A modal interaction matrix (IM) measurement procedure is 
introduced for a liquid-crystal (LC) corrector for use in a phase-wrapping 
technique.  Zernike modes are used to reconstruct the aberration wavefront 
and to drive the LC corrector.  Usually the driving area is different from the 
active area. This difference induces a coupling effect on Zernike modes, 
which may have an impact on correction precision.  In this paper the 
coupling effect is evaluated due to area difference and decentration, 
respectively. Then, a simulated turbulence wavefront is used to simulate the 
reconstruction process to evaluate its influence on reconstruction precision. 
We present simulation results that show that this method can be used to 
measure the IM with very high reconstruction precision under proper 
configuration. In order to maintain precision, the permissible eccentricity 
distance is also simulated with a result of no more than 5% of the LC 
corrector diameter. 

2009 Optical Society of America  
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1. Introduction 

Adaptive optics is used to enhance the capability of optical systems by actively compensating 
for aberrations. A commonly used adaptive optics system consists of three subsystems. A 
wavefront sensor (WFS) [usually a Hartmann–Shack (H–S) WFS] measures the distortions. A 
wavefront corrector (WFC) usually using a continuous facesheet deformable mirror (DM) can 
rapidly change its surface shape to compensate for distortions measured by a WFS. A control 
computer is used to receive the WFS measurement and translate it into control signals to drive 
the WFC. The translation procedure is accomplished by the interaction matrix (IM), which 
relates the DM actuator commands to the WFS measurement. So, the precision of the IM will 
influence correction precision.  

For a conventional continuous facesheet DM, the arrangement of actuators on the WFC 
and the lenslet array on the H–S sensor should be in proper configuration [1]. Then, the static 
response of each actuator is measured individually. These responses give the columns of the 
IM.  

A liquid-crystal (LC) corrector is an alternative selection for adaptive optics due to its low 
cost, reliability, low power consumption, low price, lack of moving mechanical components, 
and high resolution [2–6]. It has millions of pixels, which makes it possible to use the phase-
wrapping technique to increase its modulation depth without any loss of spatial resolution [7]. 
Due to the use of this technology, it is impossible to drive each single pixel to get the IM. In 
this paper, a Zernike polynomial-based modal IM calculation procedure is introduced. A set of 
Zernike polynomials is used to reconstruct the aberration wavefront and drive the LC 
corrector. The driving area of the LC corrector is usually larger than the active area for 
compensation in order to eliminate edge alignment error. The scale factor (SF), which is 
defined as the ratio of the radius of the active area and the driving area, is used to represent 
this area difference. This difference will induce a coupling effect on Zernike modes, which 
may impact correction precision. Here, we evaluated the coupling effect due to the area 
difference and decentration, respectively. Then, a simulated turbulence wavefront is used to 
simulate the reconstruction process to evaluate its influence on reconstruction precision. We 

assume the LC corrector is square with K×K pixels. The IM and the reconstruction error are 

calculated for different SF and K. The relationship between the reconstruction error with SF, 
K, and decentration is discussed.  

2. Calculation of the IM  

As we know, the pixel response of an LC corrector is piston-like, with the modulation depth 
nearly one wavelength in the visible range [8]. In order to increase its modulation depth, the 
phase-wrapping technique was used. In this condition, the control method used for the DM is 
no longer suitable for an LC corrector. We introduced a Zernike polynomial-based modal 
method to accomplish this. The Zernike polynomials are a set of functions that are orthogonal 
over the unit circle. This is defined as 
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N is the normalization factor, and 0 2θ π≤ ≤ ; n is a non-negative 

integer and m varies from  -n to n with a step of 2 [9]. 

The configuration of the LC corrector is shown in Fig. 1. The solid circle with radius 2r  

represents the driven area, which is the inscribed circle of the LC corrector. Only the area in 
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the dashed circle with radius 1r  is active for detection, which is actually matched with the 

telescope pupil used for compensation. The SF is equal to 1 2/r r . This configuration can 

eliminate accurate pupil alignment, which improves the system ease of fabrication. Otherwise, 
any missed alignment at the pupil edge will induce a correction error.  

 

 

Fig. 1. Configuration of LC corrector. 

Because 1 2r r< , the wavefront detected in r1 is the part of the LC corrector generated in r2. 

For instance, we generated only the ith Zernike mode on the LC corrector. The H–S sensor 

detected in 1r  is a serial of Zernike polynomials. This can be expressed as  
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where ,i j
M  is the jth Zernike coefficient detected for ith Zernike polynomial.  

Here, we used the phase values in 1r  to directly reconstruct the detection wavefront into 

Zernike polynomials to simulate the H–S sensor detection process. Under this procedure, the 
IM M[N, N] for all the N Zernike polynomials was measured.  

For an aberration that has a series of coefficients (1 )
j

a j N≤ ≤ , the reconstruction 

coefficients (1 )
i

c i N≤ ≤ can be calculated by 
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3. The distribution of IM 

First, we assumed that the two circles were concentric to simulate the IM measurement 
procedure just to evaluate the influence of SF. For each Zernike mode we sent to the LC 

corrector, the detected coefficients were reconstructed by the phase values in circle 1r . The 

columns of the IM were calculated for the LC corrector when K=400 and SF=0.86, as shown 
in Fig. 2. The Zernike modes 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 20, 21, 27, 28, and 35 remained 
orthogonal with lower amplitude, as shown in Fig. 2(a). All other modes revealed the coupling 
effect, as shown in Figs. 2(b)–2(e). Due to the coupling effect, the maximum amplitude 
appeared at the proximate coupling mode, not at the mode itself. From this profile we 
conclude that all the modes coupled to those corresponding modes, which have the same 

r2 

r1 
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azimuthal frequency but lower radial frequency if they exist, are shown in Fig. 3. It indicates 
that Zernike modes located at both side of the triangle have no coupling element. The 
coupling effect is represented by the red arrow lines. The coupling effect and the amplitude of 
each Zernike mode are compared with the calculation taken by Schwiegerling [10]. They 
match very well, which proves that this simulation procedure is valid.  

 

 

Fig. 2. IM coefficient profile. 

 

 
Fig. 3. Coupling relationship of all 35 polynomials. 
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After this, the decentration was considered. This situation may appear due to central 
misalignment. According to our calculation, we found that all the Zernike modes shown had 
coupling effects and became more complicated.  Figure 4 illustrates the distribution of IM 

when K=400 and SF=0.8. The eccentricity distance was 40 pixels along the 45° direction. For 

different eccentricity distances and directions, they had different distributions and amplitudes. 
This phenomenon was also proved by Lundström [11]. 

 

 
Fig. 4. Distribution of IM at decentration condition (Media 1). 

4. Evaluation of the reconstruction precision 

The previous discussion indicates that the coupling effect was influenced by the SF and 
decentration. This influence may induce reconstruction errors when used for wavefront 
correction. In this section, we discuss this reconstruction precision for different SFs, Ks, and 
decentration.  

4.1 The influence of SF and K 

At first, we assumed that the two circles on the LC corrector were concentric. A simulated 
turbulence wavefront represented by the Zernike polynomial, shown in Fig. 5, was used to 
evaluate this influence. The peak-to-valley (PV) and root mean square (rms) values were 
2.2264 µm and 0.854 µm, respectively. The reconstruction error map was expressed as  
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Fig. 5 The simulated turbulence map. 

For an LC corrector that has K×K pixels, the rms value of the reconstruction error can be 

calculated by all the (K×SF)
 2
 discrete values of the error map. The dots in Fig. 6 illustrate the 

rms values of the reconstruction error with different SFs for K=100, 200, 256, and 400. For a 
given LC corrector, it decreases when the SF increases. This value will trend to zero when 
SF=1, no matter how many pixels the corrector has.  
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Fig. 6. Rms error for different SF and K.           Fig. 7. Relationship between rms error and K. 

For a fixed SF, the rms error also changes with K. Figure 7 illustrates this change when 

SF=0.84 and 0.8. They obey the /y a x=  law with coefficients 0.31a =  and 0.58a = , 

respectively. Under this relationship, we educed the formula between the rms error, SF, and K 
with exponential fit, as shown below: 

 

 ( )1 ( /0.082)( , ) 0.0356 9302 SFRMS K SF K e− −= × − + × . 

 
The solid curve in Fig. 6 shows the fitted value. They match with the dots very well. 

4.2 The influence of decentration  

At the decentration condition, the reconstruction error will be different for different 
eccentricity distances and directions. Figure 8 illustrates the rms error with different 
eccentricity distances along the vertical direction when K=400, SF=0.8, and 0.75. The 
eccentricity distance is represented by the pixel number between the centers of the two circles. 
This indicates that the rms error does not increase when the distance is smaller than 20, which 
is 5% of K. This percentage is also supported by other K and SF configurations. This means 
that for a fixed pupil diameter, no matter how many pixels we use, the maximum permissible 
decentration is 5% of the diameter.  
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Fig. 8. Rms error induced by decentration. 

5. Discussions and conclusions 

In this paper, a Zernike polynomial-based modal method was introduced to simulate the IM 
measurement and wavefront reconstruction process for an LC corrector by the use of the 
phase-wrapping technique. The driving area of the LC corrector was always its inscribed 
circle for simple control. The active area, which was conjugated with the telescope pupil, was 
smaller than the driving area. The SF was used to represent this area difference. The mode 
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coupling effect induced by the SF was discussed. We concluded that at concentric conditions, 
all the modes coupled to those corresponding modes that have the same azimuthal frequency 
but a lower radial frequency, if they exist. The influence on the reconstruction precision was 
discussed with a simulated turbulence wavefront map for different SFs and Ks. We educed the 
formula between the rms error, SF, and K with exponential fit. This expression was just for 
the example wavefront used in the simulation. In the near future we will attempt to find the 
exact relationship considering the influence of the original aberration. For a different 
turbulence, we should choose an appropriate LC corrector and SF to attain an acceptable 
correction precision. At the decentration condition, the coupling effect becomes more 
complicated. In order to maintain the reconstruction precision, the eccentricity distance should 
restrict no more than 5% of the LC corrector diameter.  
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