
Finite Elements in Analysis and Design 45 (2009) 555 -- 568

Contents lists available at ScienceDirect

Finite Elements in Analysis andDesign

journal homepage: www.e lsev ier .com/ locate / f ine l

Using artificial reaction force to design compliant mechanism with multiple equality
displacement constraints

Zhenyu Liua,∗, Jan G. Korvinkb

aState Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, Jilin 130033, China
bLaboratory for Simulation, Department of Microsystems Engineering (IMTEK), and Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, 79110 Freiburg, Germany

A R T I C L E I N F O A B S T R A C T

Article history:
Received 6 September 2007
Received in revised form 18 March 2009
Accepted 23 March 2009
Available online 8 May 2009

Keywords:
Topology optimization
Compliant mechanism
Equality constraint
Reaction force
Mesh adaptation

Monolithic compliant mechanisms are elastic workpieces which transmit force and displacement from
an input position to an output position. Continuum topology optimization is suitable to generate the
optimized topology, shape and size of such compliant mechanisms. The optimization strategy for a single
input single output compliant mechanism under volume constraint is known to be best implemented
using an optimality criteria or similar mathematical programming method. In this standard form, the
method appears unsuitable for the design of compliant mechanisms which are subject to multiple outputs
and multiple constraints. Therefore an optimization model that is subject to multiple design constraints
is required. With regard to the design problem of compliant mechanisms subject to multiple equality
displacement constraints and an area constraint, we here present a unified sensitivity analysis procedure
based on artificial reaction forces, in which the key idea is built upon the Lagrange multiplier method.
Because the resultant sensitivity expression obtained by this procedure already compromises the effects
of all the equality displacement constraints, a simple optimization method, such as the optimality criteria
method, can then be used to implement an area constraint. Mesh adaptation and anisotropic filtering
method are used to obtain clearly defined monolithic compliant mechanisms without obvious hinges.
Numerical examples in 2D and 3D based on linear small deformation analysis are presented to illustrate
the success of the method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The design of monolithic compliant mechanisms using structural
topology optimization is an innovative method capable of designing
novel actuators and sensors [1]. The important advantages of com-
pliant mechanisms, when compared with rigid mechanisms with
joints, are that a single piece does not require assembly, that fric-
tion is reduced, and that a built-in restoring force automatically.
These characteristics make compliant mechanisms widely applica-
ble in those areas where device assembly is not practicable, i.e.
in microtechnology [2]. The simplest design of compliant mecha-
nisms can be summarized as the single-input–single-output (SISO)
type subject to a material volume constraint, and a straightforward
implementation has been demonstrated in [3] using the optimality
criterion (OC) method. However, designing for more practical actu-
ator requirements can seldom be expressed as an SISO model, and
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instead we havemultiple-input–multiple-output (MIMO) devices sub-
ject to multiple constraints, such as displacement and stress, to-
gether with material volume constraint. In this case, an advanced
optimization method with a suitable objective function is necessary
to obtain an optimized structure which can fulfill all the design ne-
cessities. Much of the pioneering work on topology optimization of
compliant mechanisms was proposed by Ananthasuresh [4], Frecker
[5], Sigmund [6,7], Saxena [8], and Pedersen [10], among others.

In this paper, we firstly review several existing objective func-
tions and the optimization methods which are commonly used for
the design of compliant mechanisms with specified constraints. As
an alternative to these existing methods, the artificial reaction force
(ARF) method is then proposed to implement compliant mechanism
design with equality displacement constraint (EDC). Possible exten-
sions of the proposed method are also discussed.

2. Survey of existing methods for the design of compliant
mechanisms

There are two different design objectives which need to be satis-
fied simultaneously when designing a compliant mechanism. First,
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Nomenclature

c(x) general objective function
fin scalar force at the input point
fout scalar force at the output point
fRIiX reaction forces corresponding to the slack dis-

placement u∗
IiX

fROiX reaction forces corresponding to the slack dis-
placement u∗

OiX
h(x) general equality constraint
g(x) general inequality constraint
ke element stiffness matrix
kin scalar coefficient of spring stiffness on the input

point
kout scalar coefficient of spring stiffness on the output

point
lIiX column vector with value of 1 corresponding to

uIiX and zero at other components
lOiX column vector with value of 1 corresponding to

uOiX and zero at other components
uin scalar displacement along the direction of fin on

the input point
uout scalar displacement on the main output point
uIiX displacements along X ∈ (x, y, z) direction for i-th

input point; uIiX includes three components, uIix,
uIiy, uIiz, for three-dimensional case

uOiX displacements along X direction for i-th output
point

u∗
IiX slack displacements along X direction for i-th input

point
u∗
OiX slack displacements along X direction for i-th out-

put point
ARF artificial reaction force
B element strain matrix
CONLIN convex linearization method
D material elastic matrix
EDC equality displacement constraint

F load vector
K discretized global stiffness matrix which is used to

calculate true displacement vector U of compliant
mechanism

KRF discretized global stiffness matrix which is used
to calculate artificial displacement vector URF and
artificial reaction forces FRIiX and FROiX

KSE discretized global stiffness matrix which is used to
calculate displacement USE

L augmented objective function
MIMO multiple input multiple output
MMA method of moving asymptotes
MSE mutual strain energy
P penalty parameter for the SIMP method
SE strain energy
SISO single input single output
SLP sequential linear programming
SQP sequential quadratic programming
U displacement vector
URF displacement vector which is used to calculate the

artificial reaction force
USE displacement vector which is used to calculate the

value of SE
� adjoint vector formechanical equilibrium equation
� diffusion time
� Lagrange multiplier for the area constraint
� numerical damping coefficient for the OC method
� Lagrange multiplier for equality constraint
� penalty coefficient for equation constraint
� scalar weight coefficient for multiple objectives
	 design domain

 design variable for topology optimization

min minimum value of design variable 


max maximum value of design variable 


the mechanism should be flexible enough to satisfy the kinematic
requirements. Second, the mechanism should stiff enough to sup-
port an external load and to transport output force and displacement
[2,8]. These two design objectives are complementary to each other.
An optimum balance between flexibility and stiffness is a key point
to be resolved in designing compliant mechanisms. Four different ap-
proaches have been proposed to balance the flexibility and stiffness
necessities. Sigmund proposed using single output displacement as
objective function [3] (Fig. 2):

max uout
s.t. KU = F (M1)

fin

4

3 uout

1

1

Fig. 1. Design domain and boundary condition for SISO compliant gripper.

where uout is the displacement on the output point which prefers to
have maximized displacement, K is the discretized global stiffness
matrix using the finite element method, U is the unknown displace-
ment vector and F is the load vector. The stiffness requirements of
the whole structure can be adjusted through the stiffness of springs
kin and kout placed on the input and output parts [17]. Anathasuresh
proposed the weighted sum of mutual strain energy (MSE) which is
numerically equal to the output displacement uout , and strain energy
(SE) which is used to measure the stiffness of the compliant mech-
anism [4] (Fig. 3 ):

max � MSE + (1 − �) SE

s.t. KU = F (M2)

where � is the weight coefficient. Because this is a bi-objective
formulation, the optimized compliant mechanism may be different
when choosing different weighted coefficients. Therefore Frecker
suggested to use the ratio of MSE and SE as the objective [5]
(Fig. 3):

max
MSE
SE

s.t. KU = F (M3)

When using the ratio of two design objectives rather than a linear
combination as the objective, it can avoid the difficulty of the Pareto
problem for a multi-objective optimization problem [9]. To consider
the output work, Sigmund proposed to use themechanical advantage
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lout
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uout
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Fig. 2. The model M1 for design of compliant gripper based on Fig. 1. (a) Design domain, input force and objective of output displacement, (b) spring model, (c) model to
solve the displacement vector, (d) model to solve the adjoint vector.

fin
uout

fin

lout -lout

Fig. 3. The model M2 and M3 for design of compliant gripper based on Fig. 1. (a)
Design domain, input force and objective of output displacement, (b) model to solve
the displacement vector, (c) model to solve the adjoint vector, (d) model to solve
the strain energy.

(the ratio of output force and input force) with constraint by the
input displacement [6]

max
fout
fin

s.t. KU = F (M4a)

where fout = kout · uout is the output (reaction) force on the output
point, and fin is the input force added at the input point. Saxena also
proposed to use an energy based objective (the ratio of square of
MPE and SE) [8] (Fig. 4 ):

max
0.5kout MSE2

SE
s.t. KU = F (M4b)

Note that, for the optimization models M1–M4, the extra constraints
are not shown in the text so as to simplify the expressions.

Parallel to these objective models, there are several mathemati-
cal programming methods which are suitable for structural topology
optimization with given constraints. The optimality criteria method
finds the optimal solution by solving the equation of optimal con-
dition. For the case when just one single geometrical constraint,
such as the material volume, needs to be constrained, this method
is straightforward to use for the design of compliant mechanisms
[3]. The second type of methods are sequential linear programming
(SLP) and sequential quadratic programming (SQP) methods. These are
classical methods from the mathematical programming viewpoint,

fin
uout

fin

lout -lout

kout

Fig. 4. The model M4 for design of compliant gripper based on Fig. 1. (a) Design
domain, input force and objective of output displacement, (b) model to solve the
displacement vector, (c) model to solve the adjoint vector, (d) model to solve the
strain energy.

and are able to solve smooth, nonlinear constrained optimization
problems. The original nonlinear objective function is approximated
using a sequence of simpler linear or quadratic forms [18]. For struc-
tural topology optimization with several constraints, together with
lower and upper bound limitations for each design variable, the con-
vex linearization (CONLIN) method [12] and its extension method of
moving asymptotes (MMA) [11] are commonly used in recent years.
Similar to the SLP and SQP methods, the CONLIN method also ap-
proximates the original objective function using a sequence of sub-
problems. However, these subproblems are separable and convex,
and are constructed using the sensitivity and the value of objective
function at the current iteration point as well as for several subse-
quent iterations [14]. Except for these mathematical programming
methods, other global type optimization methods, such as the ge-
netic algorithm, are also discussed [15,16].

For designing compliant mechanisms with multiple constraints,
the MMA type methods are widely used. Originally, the MMA is
used to optimize an objective function c(x) together with inequality
constraints gj(x):

min c(x)

s.t. gj(x)�0, j = 1, . . . ,n (1)

Here n represents the number of constraints. Equality constraints
normally can be categorized into two groups. The first are only as-
sociated with the geometrical properties of the optimization prob-
lem, such as a volume constraint, and smoothness of the structural
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boundaries. The second are often associated with forward physical
problems, such as displacement and stress constraints for the me-
chanical problem. For the first group of equality constraints, the ap-
proximation of the constraints does not require a numerical analysis
of the forward problem. Therefore they can be fulfilled separately
from second group of equality constraints, or even other inequality
constraints, and using an optimization method with lower compu-
tational cost [13]. For the second group of equality constraints, the
approximation of constraints requires costly finite element analy-
sis, or some other numerical methods to evaluate the violation of
equality constraints, which mean that they cannot be implemented
as simple as the first group. To extend the MMAmethod to problems
with equality constraints hi(x):

min c(x)

s.t. hi(x) = 0, i = 1, . . . ,m (2)

Sigmund suggested to approximate the equality constraints using
inequality constraints:

min c(x)

s.t. h2i (x)��, i = 1, . . . ,m (3)

where � is a small positive number [7]. The � can be chosen as a rea-
sonable larger number at the beginning of the optimization proce-
dure, which is then decreased continuously to a reasonably smaller
number. This strategy can also be used for both groups of equal-
ity constraints in most cases. However, the magnitude of the differ-
ent equality constraints may vary by several orders of magnitude,
one may need to calibrate the sensitivity for different equality con-
straints.

3. Design of compliant mechanism with equality displacement
constraints

In this paper, we restrict our focus on the optimization of compli-
ant mechanisms with EDCs for the purely mechanical problem with
a fixed load vector. The deformation of the compliant mechanism
is assumed to be very small so that one can use linear deformation
analysis. The optimization model uout/SE, which is similar to MSE/SE
(M3), and the OC method are used to implement compliant mecha-
nism design with EDCs. We will first derive the sensitivity of the op-
timization problem using the standard Lagrange multiplier method.
Then we propose a novel numerical method to implement the sensi-
tivity analysis with multiple EDCs based on the Lagrange multiplier
method.

3.1. Augmented Lagrangian method

One commonly used optimization method which can deal with
equality constraints is the Lagrangian method, in which the equal-
ity constraints are added into the original objective function using
Lagrange multipliers �i:

L1(u,�i) = f (u) −
m∑
i=1

�ihi(u) (4)

Here the Lagrange multipliers are treated as independent variables,
and are calculated at each step of the optimization procedure. The
quality of equality constraints strongly depends on the accuracy of
the Lagrange multipliers. Another important method for constrained
optimization is the quadratic penalty method. It replaces the con-
straints by penalty terms into the objective function, where each
penalty term is a multiple of the square of the constraints violation:

L2(u,�i) = f (u) + 1
2

m∑
i=1

h2i (u)
�i

(5)

where � is the penalty parameter. By driving � close to zero, one pe-
nalizes the constraint violations with increasing severity. It is known
that the quadratic penalty function is not exact. It has some disad-
vantages when � becomes small, even though the method is often
used in textbooks because of its simplicity and intuitive appeal [18].

One improved optimization method is to add both the quadratic
penalty terms and Lagrange multiplier terms into the objective func-
tion, which is then referred to as the augmented Lagrangian method:

L(u,�i,�i) = f (u) −
m∑
i=1

�ihi(u) + 1
2

m∑
i=1

h2i (u)
�i

(6)

This method can reduce the possibility of ill conditioning of the
quadratic penalty term by adding explicit Lagrange multiplier esti-
mates into the objective function to be minimized. Another impor-
tant property of this method is that one can obtain the minimizer of
the original constraint optimization problem by minimizing the aug-
mented objective function L even when �i is not particularly close to
zero, provided that �i is a reasonable estimate of the exact Lagrange
multipliers.

In order to implement compliant mechanism structural topology
optimization, one can derive the design sensitivity using the stan-
dard adjoint method. The objective function, where the output dis-
placement of the main output point, can be expressed as uout = lToutU,
where lout is a vector with the value 1 at the degree of freedom (dof )
corresponding to the main output point and with zero at all other
components, and U is the displacement vector. A formal statement
of the optimization problem with one equality displacement con-
straint along the y-direction between the main output point and the
other output point (Fig. 5) is

max uout
s.t. KU = F

uout − uO2y = 0∫
	


i d	 = Vol	, 0<
min�
�1.0 (P1)

For P1, the expression for the augmented Lagrangian is

L(u,�,�,�) = lToutU + �T (KU − F) − �(lToutU − lTO2yU)

+ 1
2�

(lToutU − lTO2yU)
2 (7)

where � and � are Lagrange multipliers for the linear equilibrium
equation and EDC; lout and lO2y are vectors with a value of 1 at the dofs
corresponding to the y-displacement at the main output point and
the other point with equality constraint. Here the volume constraint
is not included into the Lagrangian expression. It will be considered
using the optimality criteria algorithm separately.

When F is a design independent load, the sensitivity of Eq. (7) is

�L
�
i

= lTout
�U
�
i

+ �T �K
�
i

U + �TK
�U
�
i

− �(lTout − lTO2y)
�U
�
i

+ uo1y − uo2y
�

(lTout − lO2y)
�U
�
i

(8)

where uout = lToutU and uO2y = lTO2yU are the displacements at the
two output points. Because the equilibrium equation is solved before
the sensitivity analysis, � is an arbitrary, fixed vector. So we can
rearrange the sensitivity (Eq. (8)) as

�L
�
i

= �T �K
�
i

U (9)
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fin finΓU ΓU

lout

fRO2yfRO1y

lout

fin

uout uO2y

Fig. 5. The model proposed in this paper for design of compliant gripper based on Fig. 1.

where the terms which include �U/�
i are removed by solving the
adjoint equation

K� = −lout +
(
� − uout − uO2y

�

)
lout −

(
� − uout − uO2y

�

)
lO2y (10)

This completes the derivation of the design sensitivity for P1 us-
ing the augmented Lagrangian method. Even though the sensitivity
(Eq. (9)) has the same expression compared with the case without
equality displacement constraint, the adjoint vector � is solved by
using additional two forces, (� − (uout − uO2y)/�)lout and (� − (uout −
uO2y)/�)lO2y, which are both related with the Lagrange multiplier
� and the difference of displacement on the two points with EDC.
Therefore, the main challenge for the design of compliant mecha-
nism with EDC is to calculate the additional forces which act on the
constrained points.

3.2. Artificial reaction force method

The key idea of this paper is built upon the Lagrange multiplier
method with modified expression of the EDCs. We will derive the
design sensitivity using the standard adjoint method, and then use
ARF to calculate the adjoint vector. For a compliant mechanism de-
sign with multiple constraints of displacement, the Lagrangian for
the objective and constraints can be expressed as

L(u,�,�) = lToutU + �T (KU − F) −
m∑
i=1

�i(l
T
OiXU − u∗

OiX)

−
n∑

j=1

�j(l
T
IjXU − u∗

IjX) (11)

where u∗
OiX and u∗

IjX are the slack displacements which is introduced
additionally to implement the displacement constraint at the differ-
ent output and input points. Therefore, the adjoint equation of Eq.
(11) is

K� = −lout −
m∑
i=1

�il
T
OiX −

n∑
j=1

�jl
T
IjX (12)

In most cases, it is not straightforward to obtain accurate Lagrange
multipliers in which ensure that the optimization procedure con-
verges smoothly. Now, we note that the load vector of Eq. (10) in-
cludes the adjoint force at two points with displacement constraints.
Based on our knowledge of finite element theory, we know that the
Lagrange multiplier for a point with a displacement constraint is
simply the reaction force at this point [28,29]. Or stated differently, if
one limits the displacement of two separate different points through
a fixed relationship, then one can obtain corresponding forces which
need to be added to the problem in order to satisfy the displacement
constraints. Based on the above derivation, we propose a procedure
in order to implement sensitivity analysis for the compliant mecha-
nism design with EDCs:

KU = F (13a)

KRFURF = F (13b)

K�RF = −lout +
m∑
i=1

fROiXlOiX +
n∑

j=1

fRIjX lIjX (13c)

The three equations in Eq. (13) are discretized linear equilibrium
equations based on the finite element method. They are used to
solve the displacement vector, reaction forces, and adjoint vector
(Fig. 5b–e), according to the specified displacement boundary con-
ditions and input force, respectively. Here fROiX and fRIjX denote the
scalar artificial reaction forces in order to satisfy the equality dis-
placement constraints. Eq. (13a) is used to solve the original dis-
placement U (Fig. 5b). The displacement boundary conditions, which
are added on the constrained output and input points to Eq. (13b)
(Fig. 5c), are based on the numerical solution of Eq. (13a). In all nu-
merical examples we present in this paper, we chose�U=max(|uOiX |)
(Fig. 5c), where uOiX is the output displacements of Eq. (13a). When
compared to using the smaller absolute values, we penalize the struc-
ture to generate a larger deformation (thereby maximizing the ob-
jective function) when calculating the reaction force at the points
subject to displacement constraints. This has the similar effect as the
quadratic penalty term in Eq. (7) where the corresponding term in
adjoint equation (Eq. (8)) is related to the difference of the displace-
ments between the constraint points. The reaction forces fOiX and
fIjX at the displacement constrained points are obtained after solving
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Eq. (13b), or can be obtained simultaneously with the displacement
vector when using the Lagrange multiplier method to deal with the
boundary condition with displacement constraints. The modified ad-
joint vector �RF is solved using Eq. (13c) (Fig. 5d). Therefore, the
sensitivity, which includes the displacement constraints, is

�L
�
i

= �T
RF

�K
�
i

U (14)

Eq. (14) has a similar form to the sensitivity of an optimization prob-
lem without displacement constraints. The physical meaning behind
this method is that one can calculate the forward equation with cor-
responding load vector and displacement boundary conditions so
that all of the equality displacement constraints are satisfied simul-
taneously for the displacement solution. When the reaction force, at
points which have displacement constraints, does not equal to zero,
it means that the equality constraints of the optimization problem
are not satisfied exactly, and hence we can use these reaction forces
to calculate the adjoint load vector �RF . The sensitivity is calculated
based on the displacement vector of the original forward problem
(U in Eq. (13a)) and the modified adjoint vector (�RF in Eq. (13c)).
Ideally, a solution which satisfies all constraints is obtained when all
of the reaction forces equal to zero, which means that all equality
constraints are satisfied simultaneously.

To balance the stiffness and compliant requirement of the com-
pliant mechanism, we modify the optimization problem (P1) as

max uout/SE

s.t. KU = F

KSEUSE = lout
uout − uO2y = 0∫

	

i d	 = Vol	, 0<
min�
�1.0 (P1a)

where SE = UT
SEKSEUSE is the structural strain energy based on the

displacement solution of the equilibrium equation KSEUSe = lout . The
sensitivity of the strain energy SE is [1]

�(SE)
�
i

= −UT
SE

�KSE

�
i

USE (15)

The sensitivity of the objective function in Eq. (P1a) is

�(uout/SE)
�
i

= �L
�
i

1
SE

− uout
SE2

�(SE)
�
i

(16)

We can extend this method to optimization problems which have
different kinds of EDCs. For example, when the design goal is to
design compliant gripper in which the output displacement of two
output points have same value along the y-direction and zero along
the x-direction, the objective model is

max uout/SE

s.t. KU = F

KSEUSE = lout
uout − uO2y = 0

uO1x = uO2x = 0∫
	


i d	 = Vol	, 0<
min�
�1.0 (P2)

In problem (P1)–(P4), the main output point is also the first output
point with the displacement constraint, therefore uout =uO1y in (P1).
Here uO1x and uO2x are the displacements along the x-direction at
the output points. Problem (P2) provides more limitations to the
output performance as compared with problem (P1a). Eq. (13c) can
be written as

K�RF = −lout + (fRO1ylO1y + fRO2ylO2y) + (fO1xlO1x + fRO2xlO2x) (17)

The zero displacement boundary conditions on the x-direction at
two output points are added in Eq. (13b). We can also constrain the
displacement at points where the input force acts as long as we do
not eliminate all dofs (Fig. 16):

max uout/SE

s.t. KU = F

KSEUSE = lout
uout − uO2y = 0

uO1x = uO2x = 0

uI1y = 0∫
	


i d	 = Vol	, 0<
min�
�1.0 (P3)

Here uI1y is the displacement on the y-direction at the input force
point. Eq. (13c) can be written as

K�RF = − lout + (fRO1ylO1y + fRO2ylO2y) + (fO1xlO1x + fRO2xlO2x)

+ fRI1ylI1y (18)

The zero displacement boundary condition on the y-direction at in-
put point is added in Eq. (13b). For 3D problem, the number of dis-
placement constraints will be more than the 2D case, especially if
one wishes to control the output performance specifically. For the
design domain which is shown in Fig. 18, the objective is the output
displacement along the z-direction for the main output point, and
the jaw of gripper has mere deformation along the z-direction. The
optimization model is

max uout/SE

s.t. KU = F

KSEUSE = lout
uO1z = uO2z = uO3z = uO4z
uOix = 0, i = 1, . . . , 4

uOjy = 0, j = 1, . . . , 2∫
	


i d	 = Vol	, 0<
min�
�1.0 (P4)

Here we constrain deformation at four target points (star points in
Fig. 18) so that they move only along the z-direction. At the same
time, the displacement along the z-direction for all four output points
are the same. The uOix and uOiy are the displacement on the x- and
y-directions at the output points. Eq. (13c) is modified as

K�RF = −lout +
4∑

i=1

fOizlOiz +
2∑

i=1

fOiylOiy +
4∑

i=1

fOixlOix (19)

The zero displacement boundary condition on the x- and y-directions
at output points are added in Eq. (13b). For all of these problems
(P2)–(P4), we will solve Eq. (13) but with different displacement
boundary conditions for Eq. (13b) according to different equality
displacement constraints. Then different reaction forces are added
to calculate the modified adjoint vector �RF in Eq. (13c).

4. Numerical implementation

In order to implement EDCs using the ARF method we proposed,
we discuss some implementation decisions we made.

4.1. Design variable and sensitivity analysis

For typical structural topology optimizations with the SIMP
method, material densities are assumed constant in each finite el-
ement, or the design variable is the element relative density. The
final structural topology is depicted by discontinuous step functions
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with values close to 1 (solid) or 0 (hole). Details of a typical struc-
tural topology optimization with element density design variable is
described in [24]. In the topology optimization method, there is no
inherent restriction on how to choose design variables. The element
density is chosen merely to coincide with typical finite element cal-
culation.

In this paper, we choose the nodal density as design variable. The
element density is interpolated from the element nodal densities. It
is obvious that we can use different order polynomials to interpo-
late the material density in an element. The interpolation functions
can coincide with the element shape functions which are used to
discretize the equilibrium equation, for example, such as linear in-
terpolation for the 4-node Lagrange element and quadratic interpo-
lation for the 8-node serendipity element [23]. When using nodal
density as the design variable, the element stiffness matrix Ke is

Ke =
∫
	e

[(
jNj)
P BT D B]d	e (20)

Here N is the element shape function, B is the strain matrix, D is the
elastic matrix, and P is the penalty parameter of the SIMP method
used to penalize design variables with intermediate values between
0 and 1. In this paper, p=4 is used at the beginning of the optimization
procedure. To obtain a clear “material–hole” structure, the value of
P increases to 6 upon convergence.

The derivation of sensitivity in Section 3 is based on a discretized
form of the equilibrium equations of the underlying mechanical
problem. Because we choose nodal density as the design variable,
the sensitivity for each design variable should use information of
the element stiffness matrices and displacement values for all ele-
ments incident to a particular nodal design variable. This is different
from the procedure which applies when using element density de-
sign variable, in which only one element stiffness matrix, and the
displacement values at the nodal points which belong to one par-
ticular finite element, is needed to evaluate the sensitivity for one
specified design variable.

4.2. Optimization method and numerical problems

In Section 3, we derived a unified sensitivity which considers
all the equality displacement constraints. Therefore, only the mate-
rial volume constraint needs to be considered separately. Structural
topology optimization with only one constraint can be solved by sev-
eral mathematical programming methods. In this paper, we use the
OC method which was first proposed by Bendsoe [25]
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(21)

Heremove is positive move limit, � is numerical damping coefficient,
and Si is sensitivity including the area constraint

Si =
−�c/�
i

��V/�
i

(22)

where � is a Lagrange multiplier for the area constraint. This method
is widely used in many research papers when considering structural
topology optimization problems subject to a single constraint. When
using Eq. (21) to implement the compliant mechanism design, the
sensitivity of the objective function may have both positive and neg-
ative values. Sigmund [3] proposed to modify the update rule as

Si =
max(0,−�c/�
i)

��V/�
i

(23)

so that a fairly stable convergence can be obtained.

There are two parameters which may influence the convergence
of the OC method, one is the damping coefficient � and the other is
the allowedmaximum change of the design variable in each iteration
move. In [3], authors suggested to use �=0.3 and small value ofmove
for the SISO compliant mechanism design. Based on authors' limited
numerical experience, the damping coefficient is chosen as 0.2 for 2D
examples and 0.1 for the 3D example. These two values works quite
robust for the examples listed in this paper. In the case that there has
numerical oscillation at the beginning of the optimization procedure,
one can choose even smaller value ofmove. In short sum, the smaller
value of the � and move makes the optimization procedure more
stable than the large value case. However, the price we pay is the
more iteration loops needed to obtain a converged solution.

Checkerboard patterns and mesh-dependencies are two well-
known numerical problems which arise during topology optimiza-
tion. There are a range of papers discussing the essence of these nu-
merical problems, and several efficient methods have been proposed
to overcome them [19,20]. In this paper, a simple strategy called
the filter method is used to avoid these two numerical problems. To
obtain a structural topology with smooth boundary without numer-
ical oscillation, sensitivity and density values are filtered before and
after updating the nodal design variable. For the design of compli-
ant mechanisms, hinge-like features may occur when using element
density design variables. This is also the situation for the nodal den-
sity design method, where design variables with intermediate values
are located in structural parts which heavily influence the deforma-
tion of mechanisms. There are also several papers that focus on the
solution to this problem [17]. In this paper, we try to avoid hinge-like
structures using a density filter together with mesh adaptation. At
the same time, we use a low ratio of material volume constraints so
that the optimization results in monolithic mechanisms without se-
riously “weak” parts. The method which avoids hinge-like structures
is based on numerical experience and is stated without theoretical
proof.

4.3. Mesh adaptation

Generally, the design domain is discretized once only using reg-
ular mesh during topology optimization. The entire iteration pro-
cedure is then performed using this fixed mesh. The position and
smoothness of boundary strongly depends on themesh density. Thus
one has to use a reasonable number of finite elements inside the
design domain in order to balance computational cost and accuracy
of the resulting structural layout. Mesh adaption has become an in-
dispensable tool for the accurate and cost-effective numerical solu-
tion of partial differential equations. A dense mesh density is often
required over the physical domain to resolve physical phenomena
accurately. Adaptive meshing, which maintains a high mesh density
locally in regions of material boundaries, or large solution variations,
is attractive and will obviously improve the computational accuracy
[21,32]. In this paper, the design domain is discretized using linear
triangular elements in 2D and tetrahedral elements in 3D, and the
h-adaptive method is implemented to locally capture the boundary
position.

Because structural topology optimization of compliant mecha-
nisms results in non-convex optimization problems, it is hard to ob-
tain the global optimum. To avoid the optimized structure falling
into a bad local optimum too early due to the use of mesh adapta-
tion, we use the following strategy for mesh discretization. Firstly,
we use a relatively coarse mesh to start the optimization procedure,
then we refine the mesh regularly within the whole design domain
when the change of the objective value is smaller than certain small
values. For example, if the change is smaller than 5 percent when
compared with the value from the last iteration. This procedure is
repeated twice until we obtain a relatively clear topology of the
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structure. Then we use the h-adaptive method to locally refine the
mesh in which the nodal density value is larger than a certain value,
and coarsen the mesh where the nodal density value is smaller than
a certain value (Fig. 21). In this procedure we assume that the final
layout of the compliant mechanism is similar to the layout before
we refine the mesh adaptively, because a high nodal design value
cannot happen in a coarse mesh area as confirmed by our numerical
experiments.

When compared with a rectangular mesh, the connectivity of
an unstructured triangular (2D) or tetrahedral (3D) mesh is more
complicated. Therefore, the filteringwhich is used to avoid numerical
problems needs to be considered separately here. We use the idea
of isotropic diffusion to obtain a filter matrix:

�

�t

= ∇ · (∇
) (24)

The discretized form of Eq. (24) is


new = 
old + 
tM−1K (25)

where M is the mass matrix, K is the stiffness matrix, and 
t is the
discretized time step. Because the mesh is fixed for each hierarchic
mesh, one can calculate the filter matrix M−1K once and use it to
filter the sensitivity and density when the mesh remains unchanged.
This method is used for optimization with a regularly refined mesh.
After the design domain is adaptively refined, using an isotropic type
filter does not result in a clear material-void structure. Therefore, we
use the anisotropic diffusion method:

�

�t

= �∇ ·
(

1
1 + |∇
|2 ∇


)
(26)

Fig. 6. Optimized compliant gripper using uout/SE model in Fig. 5a without equality displacement constraint. (a) Optimized topology, (b) linear deformation analysis (scaled
deformation).

Fig. 7. Optimized compliant gripper using reaction force model in Fig. 5 with equality displacement constraint uout − uO2y = 0 (P1). (a) Optimized topology, (b) linear
deformation analysis (scaled deformation). The ratio of y-displacement on two output points is uout/uO2y = 1.029.

where � is a small scalar number with positive value and t is the dif-
fusion time (Fig. 17). The computational cost of solving the nonlinear
equation (26) is very high. Instead of solving it in each optimization
iteration, we solve it every 5–10 iterations without filtering either
the sensitivity or the nodal density values between two anisotropic
filtering steps. In this paper, all of the sensitivity analyses, mesh
adaptation and the isotropic and anisotropic filtering steps are im-
plemented using the commercial software Comsol's script version
3.3 [22]. The task of programming is detailed in [33].

5. Numerical examples

In this section, we illustrate our method using compliant gripper
examples with multiple EDCs to control the output performance. The
material used to design the compliant mechanisms in this paper has
Young's modulus E = 1.1GPa and Poisson's ratio v = 0.35.

5.1. Gripper design using single push force

The first example demonstrates the design procedure of the
compliant grippers. The case of the design domain is 4 × 3 cm2 and
the thickness is 1mm (Fig. 1). The input load fin = 1N is applied at
the center of the right edge. The volume is restricted to 20 percent
of the design domain. Due to the symmetrical property, only the up-
per half of the design domain is discretized using triangular mesh.
The optimized topology obtained without using equality constraint
is shown in Fig. 6a. The resulting deformation obtained using lin-
ear FE analysis shows non-parallel movement of the gripper jaws
(Fig. 6b). Using the optimization model (P1a) with one equality con-
straint for output displacement, and the sensitivity analysis method
we proposed in this paper, the optimized topology is shown in
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Fig. 8. Optimized compliant gripper using reaction force model in Fig. 5 with three equality displacement constraints, uout − uO2y = 0, uO1x = 0, uO2x = 0 (P2). (a) Optimized
topology, (b) linear deformation analysis (scaled deformation). The ratio of y-displacement on two output points uout/uO2y =1.032; the ratio uO1x/uO1y =0.017, uO2x/uO2y =0.019.

Fig. 9. Convergence curves for the compliant gripper in (Fig. 8). (a) The ratio of uout/uO2y , (b) the ratio of uO1x/uO1y (RXY1) and uO2x/uO2y (RXY2). For the value larger than
0.3 and smaller than −0.1 are cutoff in order to show the convergence curve clearly, (c) convergence curve of the artificial reaction forces Fo1x = FRO1x and Fo2x = FRO2x to
implement constraints uO1x = uO2x = 0 on two output points, (d) convergence curve of the artificial reaction forces Fo1y = FRO1y and Fo2y = FRO2y to implement constraints
uO1y = uO2y on two output points.

fin

uout uO2y

Fig. 10. Design domain with pull force on the right down corner.

Fig. 7a. The resulting deformation obtained using linear FE analysis
(Fig. 7b) shows a nearly parallel movement of the gripper jaws. The
ratio of output displacement at two points with equality constraints

is 1.029, which means a 2.9 percent of deviation from the ideal ratio
1.0. To obtain a more precise control of output performance, the op-
timization model (P2) is used to design this compliant gripper. In this
case, three different displacement equality constraints are used. The
optimized topology is shown in Fig. 8a. The resulting deformation
obtained using linear FE analysis (Fig. 8b) shows a vertical parallel
movement of the gripper jaw. The ratio of output displacement at
two output points is 1.032, which means 3.2 percent of constraints
residual. The ratio of uOix/uOiy at two output points is 0.017 and 0.019,
which is quite close to the ideal value zero. In Fig. 7b, the ratio of
uOix/uOiy on two output points is 0.657 and 0.669, it means obvious
horizontal displacement at two output points. From Figs. 7 and 8,
it is clear that added constraints result in mechanisms with an en-
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Fig. 11. Optimized compliant gripper using uout/SE model in Fig. 10 without equality displacement constraint. (a) Optimized topology, (b) linear deformation analysis (scaled
deformation).

Fig. 12. Optimized compliant gripper using reaction force model in Fig. 10 with equality displacement constraint uout − uO2y = 0 (P1). (a) Optimized topology, (b) linear
deformation analysis (scaled deformation). The ratio of y-displacement on two output points uout/uO2y = 1.035.

Fig. 13. Optimized compliant gripper using reaction force model in Fig. 10 with three equality displacement constraints, uout − uO2y = 0, uO1x = 0, uO2x = 0 (P2), using reaction
force model. (a) Optimized topology, (b) linear deformation analysis (scaled deformation). The ratio of y-displacement on two output points uout/uO2y = 1.015; the ratio
uO1x/uO1y = 0.023, uO2x/uO2y = 0.023.

tirely different topology. It is worth noting that the extra constraints
in optimization model (P3) does not modify the ratio of output dis-
placement and input displacement too much compared to the opti-
mization model (P2), where the value of ratio uout/uI1x is 0.486 and
0.461, respectively. The performanceof the optimization procedure
of the compliant gripper in Fig. 8a is shown in Fig. 9. Fig. 9c and d
show that the reaction forces added at the points with equality con-
straints converge to zero as the constraints are satisfied gradually.

In these three examples, the design domain is discretized us-
ing 6578 triangular elements at the beginning of the optimization.
The mesh is refined twice inside the design domain if the change of
the value of the objective function is smaller than 5 percent when
compared with the value from the last iteration. In order to obtain
a smooth expression of the material boundary which can be used
directly for CAD tools or fabrication, the h-adaptive refinement is

fin

uout  uO2y

Fig. 14. Design domain with pull force on the up-right corner.

used to refine the mesh locally around the material boundary. Con-
sequently the number of finite elements used may vary for different
examples in this paper. For the structural topology in Fig. 8a, two
adaptive meshes which have 36061 and 56202 triangular elements
are used. Therefore, the material boundary is quite smooth even for
the monolithic slender structures (Fig. 21).
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Fig. 15. Optimized compliant gripper using reaction force model in Fig. 14 with four equality displacement constraints, uout − uO2y = 0, uO1x = 0, uO2x = 0, and uI1y = 0 using
reaction force model. (a) Optimized topology, (b) linear deformation analysis (scaled deformation). The ratio of y-displacement on two output points uout/uO2y = 1.033; the
ratio uO1x/uO1y = −0.019, uO2x/uO2y = −0.024, uI1y/uI1x = −0.024.

fin

uout uO2y

Fig. 16. Design domain with push force on the up-right corner.

Fig. 17. Optimized compliant gripper using reaction force model in Fig. 16 with four equality displacement constraints, uout − uO2y = 0, uO1x = 0, uO2x = 0, and uI1y = 0 using
reaction force model. (a) Optimized topology, (b) linear deformation analysis (scaled deformation). The ratio of y-displacement on two output points uO1y/uO2y = 1.038; the
ratio uO1x/uO1y = 0.001, uO2x/uO2y = 0.004, uI1y/uI1x = −0.002.

Fig. 18. One-quarter of design domain for 3D compliant gripper. Four star points
are the output displacement points.

5.2. Gripper design using single pull force

Using the same design domain, material property, and opti-
mization method, we design compliant grippers which have similar
performance at the two output points but a push force fin = 1N is
applied at the center of the right edge. The volume is restricted to

20 percent of the design domain. Due to symmetrical property, only
the upper half of the design domain is discretized using triangular
mesh. For the following three cases: (1) where there is no dis-
placement constraint, (2) where there is one equality displacement
constraint, and (3) where there are three equality displacement
constraints, the optimization results are shown in Figs. 11, 12, and
13, respectively. In Fig. 12 the ratio of output displacements at
two output points is 1.035, which means 3.5 percent of constraints
residual. In Fig. 13 the ratio of output displacement at two output
points is 1.015, which means 1.5 percent of constraints residual.
The ratio of uOix/UOiy at two output points is 0.023 and 0.023, which
are quite close to the ideal value zero.

5.3. Gripper design using symmetrical forces

When the input forces do not act along the symmetrical line of
the design domain, the displacement on the input force point may
also need additional constraints. For the same design domain, the in-
put forces now act on the top and bottom corners of the right edge.
The volume is restricted to 20 percent of the design domain. Due



566 Z. Liu, J.G. Korvink / Finite Elements in Analysis and Design 45 (2009) 555 -- 568

Fig. 19. Optimized result of the 3D compliant gripper. (a) X–Y profile view, (b) X–Z profile view, (c) 3D structure. The ratio of z-displacement on four output points are
1.019, 1.017, 1.005; the ratio uOix/uOiz are 0.075, 0.080, 0.081, 0.086, the ratio uOiy/uOiz are 0.003, −0.004.

to symmetrical property, only the upper half of the design domain
is discretized using triangular mesh. In optimization model (P3) an-
other equality constraint is added to limit the displacement along
the direction which is perpendicular to the input load, for the de-
sign domain and pull input force shown in Fig. 14. The optimized
topology is shown in Fig. 15. When the input force is push force
(Fig. 16), the optimized topology is shown in Fig. 17. Based on the re-
sulting deformation using linear FE analysis, the equality constraints
are satisfied within small residual. The ratio of displacement at two
output points in Fig. 15b is 1.033, which means 3.3 percent of con-
straints residual. The ratio of uOix/Oiy at two output points is −0.019
and −0.024, the ratio of uIiy/uIix at input force point is −0.024 which
is both quite close to the ideal value zero. The ratio of output dis-
placement at two output points in Fig. 17b is 1.038, which means 3.8
percent of constraints residual. The ratio of uOix/uOiy at two output
points is 0.001 and 0.004, the ratio of UIiy/UIix at input force point is
−0.002 which means both are quite close to the ideal value zero.

5.4. 3D gripper design

Compared with the 2D case, a 3D gripper (Figs. 18–20) may have
more complicated topology. The size of design domain is 4×3×3 cm3

(Fig. 18), and input load fin = 1N is applied at the center point of the
right-side surface. Due to symmetrical property, only one quarter
of the design domain is discretized using the tetrahedral element.
The optimization model is P4. Here we impose constraints so that
the gripper jaw can only close vertical and parallel. There are nine
equality constraints, the first three limit the deformation along Z di-
rection, another four limit the deformation along X direction, and
the last two limit the deformation along the Y direction. The opti-
mized topology is shown in Fig. 19. Fig. 19a and b are the X–Y and
X–Z profile, respectively. The ratio of output displacement between
four output points is 1.019, 1.017 and 1.005, respectively. The ratio

Fig. 20. Smoothing the numerical oscillation using anisotropic filter. (a) Numerical
result with numerical oscillation, (b) smoothed result.

of uOix/uOiz at four output points is 0.075, 0.080, 0.081 and 0.086, re-
spectively, and the ratio of uOiy/uOiz at two output points which are
not located on the symmetrical profile, is 0.003 and −0.004, respec-
tively, in which both are quite close to the ideal value zero (Fig. 19).

6. Discussion

From the point of view of application, it is preferable that the
compliant mechanism can generate relatively large deformation un-
der a load vector. Nonlinear deformation analysis is necessary in this
case. In [10], the compliant mechanisms are designed using geomet-
rically large deformation analysis. Numerical examples demonstrate
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Fig. 21. (a) Adaptive mesh used for Fig. 8a. (b) and (c) Local enlarged mesh details.

that the optimal solution using linear small deformation analysis
may fall into a suboptimal solution, in which the structural topol-
ogy is different to the one which is optimized using geometrically
large deformation analysis. In this paper, we focus on the algorithm
which can implement displacement equality constraints, and only
the linear small deformation analysis is used. To verify the optimal
topology we obtained, one can compare the numerical results in [6]
in which linear small deformation analysis is used. However, the
method we proposed to deal with equality constraints can be ex-
tended to the geometrically large deformation analysis. The reasons
are: (1) that the reaction force can be calculated in the same way
as the linear case; (2) the adjoint vector can be calculated using the
tangential stiffness matrix [10]. Of course, the performance of the
algorithm we proposed in combination with nonlinear analysis de-
serves a detailed discussion in a separate paper.

In this paper, a mechanical problem subject to displacement
equality constraints is considered. The method we proposed to deal
with equality constraints can also be extended to other elliptical
type partial differential equations, such as the electrostatic problem
with equality potential constraints, and the thermal problem with
equality temperature constraints, in which cases the corresponding
physical meaning of the Lagrange multipliers are electrical charge
and thermal flux.

Only equality constraints are considered in this paper. For more
general structural optimization problems, inequality displacement
constraint should also be considered. One possible way of extend-
ing our method to inequality displacement constraints is to choose
the active inequality constraints set and then transfer these to the
equality constraints set after solving the original forward problem.

7. Conclusion

In order to obtain a desired input and output displacement perfor-
mance, compliant mechanisms design requires the consideration of

multiple displacement constraints. Based on artificial reaction forces,
we propose a method which can be used to design compliant mech-
anism with multiple equality displacement constraints. Numerical
examples illustrate the effect of the method. If there is only a few
equality displacement constraints, the computational cost of the sen-
sitivity is expensive when comparing with the MMA type method.
However, the advantage of the method we propose is that one can
implement more equality constraints at many points without in-
creasing the computational cost excessively.
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