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To get a high-precision optical surface, the deconvolved process of dwell time was transferred to a matrix
equation in which the damped factor and the extra removal amount were introduced to expand the free-
dom of solution. A path weight factor and a surface error weight factor were used to take the scanning
path and the initial surface error into account. Combined with the Gerchberg bandlimited extrapolation
algorithm for initial surface errormap extension, a high-precision final surface could be obtained within a
factual aperture. Two surface error maps were calculated to rms ¼ 0:1nm from rms ¼ 130:23nm and to
rms ¼ 0:08nm from rms ¼ 282:74nm. The simulations show that a perfect dwell time solution could be
obtained by the revised matrix equation and initial surface error map extension with the help of the least
squares QR (LSQR) algorithm. © 2009 Optical Society of America

OCIS codes: 220.0220, 220.4610, 220.4000.

1. Introduction

The development of optical technology has increased
the requirements for high-precision optical surfaces.
At present, the contact figuring methods are limited
to obtaining optical surfaces with accuracies down to
the nanometer or subnanometer level due to the
wear tool, edge effects, and load press. Ion beam fig-
uring (IBF) avoids these problems because of non-
contact figuring. More attention has been paid to this
technology during the past two decades [1–5]. The
principle of IBF is that the computer controlled five-
axis moving system moves an ion beam source ac-
cording to a predefined scanning path and computed
dwell time on the optical surface, and the desired re-
moval amounts can be removed by sputtering be-
tween the ion beam and the optical material. When
the ion beam source is stable and the five-axis mov-
ing system is high precision, the desired removal
amounts can be expressed as the convolution opera-
tion of dwell time function and ion beam removal
function [6,7]. The dwell time solution becomes the
key approach to ensure the high-precision surface

after IBF. In this paper, the deconvolved process
was transferred to a matrix equation. The damped
factor and extra removal amount are introduced to
the matrix equation to expand the freedom of dwell
time. Path weight factor and surface error weight fac-
tor are introduced to the matrix equation to take the
scanning path and initial surface error into account.
With the Gerchberg bandlimited extrapolation algo-
rithm for initial surface error map extension, a high-
precision surface could be obtained within a factual
aperture.

2. Analysis of the Ion Beam Figuring Process

Figure 1 shows the classical sketch of an IBF process
[8]. The scanning path and dwell time could be
realized by a five-axis moving system. The error
amounts are removed by sputtering between the ion
beam and the optical material. For a given point, the
material removal amounts are proportional to the
intensity of the ion beam and the dwell time. The
figuring process could be expressed as

Rdðx; yÞ ¼ Aðx; yÞ � �tcðx; yÞ; ð1Þ
where Rdðx; yÞ is the desired removal function and
Aðx; yÞ is the ion beam removal function per unit
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time. They are measured before the IBF process.
tcðx; yÞ is the computed dwell time function.

A. Ion Beam Removal Function

The removal capability characteristic of an IBF pro-
cess can be described by the ion beam removal func-
tion (BRF), Aðx; yÞ, which is defined as the material
removal profile or “footprint” generated by the pro-
jected ion beam per unit time. It can be thought that
the ion beam is perpendicularly projected to the plat
surface if the curvature radius of the dwell point of
the optical surface is far larger than the ion beam ra-
dius. Thus we can think that the ion beam removal
function is unchangeable across the whole surface in
the figuring process, or as figuring on a plat surface.
Based on stable ion source technology, it is typically
smooth, symmetric, and highly Gaussian in shape
and can be described as AðrÞ ¼ A0 expð−r2=σ2Þ with
polar coordinates. The peak removal rate A0, ion
beam diameter d ¼ 6σ, and full width at half-
maximum FWHM ¼ 2σðln 2Þ1=2 are the key param-
eters used to describe the BRF.

B. Desired Removal Function

The desired removal function can be found by sub-
tracting the final desired height of the surface error
map from the initial height map:

Rdðxk; ykÞ ¼ Zmðxk; ykÞ − Zdðxk; ykÞ; ð2Þ

where k ¼ 1; 2::::Nr, andNr denotes the total number
of sample points of the surface error map. Zmðxk; ykÞ
and Zdðxk; ykÞ are the measured and desired heights
of sample point ðxk; ykÞ.
C. Dwell Time Algorithm

There are several methods used to perform the
deconvolution operation, such as the Fourier trans-
form, the iterative method, and the matrix method.
In a Fourier transform, the same sample interval
across the surface error map is needed, and a vari-
able parameter is needed to ensure nonnegative

dwell time [6,7]. In the iterative method, the dwell
time is made of the desired removal function with
some scale and is introduced to the convolution op-
eration to obtain the computed removal function.
The difference between the results of convolution
and the desired removal function is then used for suc-
cessive iterations, and the computation is repeated
until the result converges to within an acceptable
limit of error. However, experience indicates that this
method is not always stable and sometimes fails to
converge [9]. The matrix approach [10], in which
the sample interval can be arranged freely, transfers
the deconvolving process into a matrix equation.
Unfortunately, the matrix equation is generally an
ill-posed equation and is susceptible to the trivial
changes of the matrix. Even if the dwell time could
be solved, the results are both positive and negative
and could not be used with the IBF process directly.
To solve this problem, a damped factor was intro-
duced to the matrix equation to balance the relation
between the residual surface errors and the magni-
tude of the dwell time [10]. However, simulations
based on the matrix approach show that a high-
precision surface could not be obtained with the
unique damped factor.

3. Revised Dwell Time Matrix Equation

In this section, the deconvolved matrix equation is
first set up. The damped factor and extra removal
amount are introduced to the matrix equation to
expand the freedom of dwell time. The path weight
factor and the surface error weight factor are used
to take scanning path and surface error into account.

A. Setup of Matrix Equation

When the ion beam scans all the dwell grids on an
optical surface, the actual material removal amounts
on a given point can be described as

Raðxk; ykÞ ¼
XNt

i¼1

Aðxk − ξi; yk − ηiÞtcðξi; ηiÞ; ð3Þ

where Nt is the total numbers of ion beam dwell
points. Aðxk − ξi; yk − ηiÞ is the material removal
amount per unit time at point ðxk; ykÞ when the cen-
ter of the ion beam dwell is on the point ðξi; ηiÞ, and
tcðξi; ηiÞ is the dwell time. With the help of

Raðxk; ykÞ ¼ rak
; Rdðxk; ykÞ ¼ rdk

;

Aðxk − ξi; yk − ηiÞ ¼ aki; tcðξi; ηiÞ ¼ ti;

Eq. (3) can be expressed as
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Fig. 1. (Color online) Sketch of IBF process.
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We let the left vector of Eq. (4) equal the desired re-
moval function; the deconvolution operation of dwell
time would then become the solution of the matrix
equation. The dwell and sample grids of optical sur-
face could be freely arranged according to scanning
path and initial surface error map. The root mean
square (rms) of residual surface error could be
described as rms ¼ fPNr

k¼1½
PNt

i¼1ðakiti − rdk
Þ�2=Nrg1=2.

B. Revised Matrix Equation

The unique dwell time solution of Eq. (4) could be
computed by the inverse matrix method when the
rank ðAÞ ¼ Nr ¼ Nt. However, matrix A is generally
singular and susceptible to trivial changes. The re-
sults are both positive and negative and could not
be used in the IBF process directly. As to Nt < Nr,
the rank of matrix A might not equal the rank of
its extending matrix in engineering. So it is
not advisable to find the accuracy solution of matrix
equation (4) in engineering. A damped factor W was
introduced to Eq. (4) [10]:
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where matrix A was extended to an ðNr þNtÞ ×Nt
matrix, and the desired removal vector was extended
to an ðNr þNtÞ × 1 column vector. The column vec-
tors of matrix A and desired removal vector are not
correlated with each other. This is always true in en-
gineering no matter what the scanning path and
initial surface error map. Then Eq. (5) becomes a
completely rank-deficient least squares problem, in
which the trivial changes of matrix A would not have
significant effects on the solution. The solution ~t ¼

½t1; t2;…tNt
�T of Eq. (5) should minimize the following

expression:

�XNr

k¼1

�XNt

i¼1

ðakiti − rdk
Þ
�
2
=Nr þW2

XNt

i¼1

t2i

�
1=2

: ð6Þ

Because the deconvolution operation of dwell time
could be transferred to Eq. (5) with the ion beam re-
moval function, the initial surface error map, and the
scanning path in the individual IBF process, then the
damped factor is a parameter for the individual IBF
process. In fact, the damped factor, with the range of
0 to × ∞, is a weight factor that allows the user to
specify the relative weight between the residual
surface error and the magnitude of the dwell time so-
lution. Simulations show that it is hard to get the
nonnegative dwell time solution with a small
damped factor; however, the larger damped factor
may result in larger residual errors due to a rela-
tively small weight. The problem now is how to find
the suitable damped factor to balance the relation be-
tween them and at the same time to ensure the non-
negative dwell time solution. We proposed a method
to revise Eq. (5). Except for the damped factor, the
extra removal amount is introduced to expand the
freedom of solution. The effects of scanning path and
initial surface error on the final surface are also ta-
ken into account with path weight factor and surface
error weight factor. Thus Eq. (5) becomes

0
BBBBBBBBBBB@

rd1
þ γ0

rd2
þ γ0
..
.

rdNr
þ γ0
0
0
..
.

0

1
CCCCCCCCCCCA

¼

0
BBBBBBBBBBBB@

a11 a12 � � � a1Nt

a21 a22 � � � a2Nt

..

. ..
. . .

. ..
.

aNr1 aNr2 � � � aNrNt

WP1S1 0 � � � 0
0 WP2S2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � WPNt
SNt

1
CCCCCCCCCCCCA

0
BBB@

t1
t2
..
.

tNt

1
CCCA; ð7Þ

whereW is still the damped factor, and γ0 is the extra
removal amount. The dwell time solution is mainly
responsible for the two variants. The path weight
factor can be described as

Pi ¼ H ·
XNt

j¼1

Aðξi − ξj; ηi − ηjÞ=
XNt

i¼1

XNt

j¼1

Aðξi − ξj; ηi − ηjÞ:

ð8Þ
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When the ion beam scans all dwell grids according to
the scanning path per unit time, the removal amount
on dwell point ðξi; ηiÞ is

PNt
j¼1 Aðξi − ξj; ηi − ηjÞ. Thus

the normalized path weight factor Pi can be obtained
by Eq. (8). It can be imaged that Pi is larger in dense
grid areas than in sparse grids. When Pi was intro-
duced to Eq. (7), it revised the relative weight
between the residual surface error and the magni-
tude of the dwell time solution. Thus the effects of
scanning path grids on the final surface could be ta-
ken into account with Pi. It is especially helpful for
an irregular scanning path. The surface error weight
factor can be described as

Si ¼ ½ðRd þ γ0Þmax − ðRdðξi; ηiÞ þ γ0Þ�=ðRd þ γ0Þmax:

ð9Þ

The desired removal amount on dwell point ðξi; ηiÞ
is Rdðξi; ηiÞ þ γ0, which can be inverted and normal-

ized by Eq. (9). It can be imaged so that Si is larger in
small rather than large desired removal amount
points. When Si was introduced to Eq. (7), it revised
the relative weight between the residual surface er-
ror and the magnitude of the dwell time solution.
Thus the effects of the initial surface error map on
the final surface could be taken into account with Si.

The dwell time solution of Eq. (7),~t ¼ ½t1; t2;…tNt
�T ,

should minimize the following expression:
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Relative to Eq. (5), γ0 expands the freedom of dwell
time. Pi and Si revised the weight between the resid-
ual surface error and the magnitude of dwell time.
The singular value decomposition (SVD) can be used
to find the minimum least-squares solution of Eq. (7),
~tSVD ¼ ½t1; t2;…tNt

�T :

~pstSVD ¼
XM
i¼1

σi~μTi ð~rd þ~γ0Þ
σ2i þW2 ~νi; ð11Þ

Fig. 2. (Color online) Scanning dwell grids according to uniform
scanning path (extending half of the ion beam diameter).

Fig. 3. (Color online) Ion beam removal function per unit time.

Fig. 4. (Color online) Initial surface error maps on (a) the flat surface and (b) the parabolic surface.
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where ~pstSVD ¼ ½P1S1t1;P2S2t2;…PNt
SNt

tNt
�T, M is

the singular value numbers of matrix A, and ~μi
and~νi are the ith left singular and ith right singular
orthonormal column vectors. From Eq. (11), we can
see that γ0 would make the dwell time solution move
toward the positive direction as a whole, and the
dwell time solution of Eq. (5) with some negative will
become positive in Eq. (7). The range of the dwell
time solution enlarges relative to that of Eq. (5). Thus
we could find the nonnegative dwell time solution
with smaller damped factor by the help of γ0. For ob-
taining a high-precision surface, there are generally
many dwell points and surface error sample points.
The diameter of the ion beam is smaller than the dia-
meter of the optical component. Because of these
facts, matrix A becomes a large-scale sparse matrix,
and SVD is not a good method due to the long time to
compute. A numerical algorithm, known as least
squares QR (LSQR) [11], has been developed that ad-
dresses the problem of solving a large, sparse, rank-
deficient system of equations. With the reasonable
range of W and γ0, the dwell time solution~tLS ¼ tðW;
γ0Þ can be obtained from Eq. (7). The residual surface
error could be expressed as the function of W and

γ0: rms ¼
nPNr

k¼1

hPNt
i¼1ðakitiLS − rdk

− γ0Þ
i
2
=Nr

o
1=2

.

Based on the LSQR algorithm for Eq. (7), the time
cost is several minutes, so the damped factor and ex-
tra removal amount can be decided by trial and error
for an individual IBF process. Usually the damped
factor is less than 10, and the extra removal amount
is less than half of the wavelength. W and γ0 should
meet the following criteria: (a) Dwell time solutions
~tLS are nonnegative. (b) The magnitude norm of~tLS,
‖~tLS‖2

2, should be bound to a given value. (c) Based on
the above, the suitable values of W and γ0 can be
found by the residual surface error, rms ¼ f ðW; γ0Þ,
meeting the precision requirements.

4. Initial Surface Error Map Extension

A. Initial Surface Error

Although final surface precision is guaranteed by the
dwell time solution computed by the revised Eq. (7),
simulations show that residual surface error is larger
at the edge than in the center, and the dwell time has
a spiky shape at the edge. The main reason is the dis-
continuity of the initial surface error map at the
edge. Different from edge effects in contact figuring,
IBF is a noncontact figuring method. The ion beam
removal function is unchangeable whether the opti-
cal component exists or not. This fact provides us a

Fig. 5. (Color online) Dwell time without extension on (a) the flat surface and (b) the parabolic surface.

Fig. 6. (Color online) Residual surface error maps after IBF on (a) the flat surface and (b) the parabolic surface.
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method to deal with the problems mentioned above.
We extend the initial surface error map with an ion
beam diameter and make the extension part join
smoothly with the factual part. The new extended
surface error map is regarded as the initial surface
error that needs to be figured. Thus the desired re-
moval function and dwell time will also extend an
ion beam diameter. However, we just take care of the
factual initial surface error part. Because the outer
spiky dwell time at half of the ion beam diameter
has no difference on the factual initial surface error
part, it can be abandoned. The left dwell time that
extends half of the ion beam diameter becomes
smooth at the edges, and the final surface will also
be smooth within a factual aperture.

B. Gerchberg Bandlimited Extrapolation Algorithm [12]

The Gerchberg bandlimited extrapolation algorithm
in two dimensions was used to extend the factual sur-
face errormap.Hereuðx; yÞdenotes the initial surface
error map that is nonzero over region Txy, and the
extended region is denoted by Txy0. We let uðx; yÞ have
a Fourier spectrum Uðf x; f yÞ after extension, and we
define the bandlimited spectrum region asΩf xf y. Here
GTxy

, GTxy0
, and GΩf xf y

are gate functions defined in

regions Txy, Txy0, and Ωf xf y , respectively. Then
we can show the initial surface error map uðx; yÞ after
extension:

uNðx; yÞ ¼
XN
n¼0

Hnuðx; yÞGTxy0
; ð12Þ

here H ¼ ðGTxy0
−GTxy

ÞF−1GΩf xf y
F is the extension

operator, and F and F−1 are Fourier transform and
Fourier inverse transform. It has been proved that
uNðx; yÞ will converge to uðx; yÞ with bandlimited re-
gion Ωf xf y as N → ∞ [12]. In engineering, Eq. (10) is
run to some N to ensure a smooth joint at the edge.

5. Simulations

Two simulations are conducted to demonstrate how
to solve the dwell time mentioned above. The para-
meters of the ion beam removal function are A0 ¼
100nm=min, d ¼ 10mm, and FWHM ¼ 2:7752mm.
Ion beam scanning dwell grids according to the scan-
ning path are linear uniform intervals (1mm) in the
projected X–Y plane, and the dwell point numbers
are the same as the surface error sample point num-
bers. Figure 2 shows the scanning dwell grids accord-
ing to the scanning path. Figure 3 shows the ion
beam removal function per unit time. Figure 4 shows
the initial surface error maps of two optical compo-
nents with a diameter of 50mm in which (a) shows
a flat component and (b) shows a parabolic compo-
nent with vertex radius 500mm (it is far larger
than the ion beam radius). The initial surface errors
are rms ¼ 130:23nm, PV ¼ 596:98nm, and rms ¼
282:74nm, PV ¼ 1316:92nm, respectively. To de-
monstrate the method mentioned above, the desired
removal function was first computed by subtracting
the negative minimum of the initial error height map
of the optical surface from it and introduced to
Eq. (5). The results show that the nonnegative dwell
time can be guaranteed with W ¼ 1:2 and W ¼ 1:4
for flat and parabolic optical components, respec-
tively. The residual surface error is rms ¼ 41:7nm,
PV ¼ 119:03nm, and rms ¼ 118:52nm, PV ¼
244:2nm, respectively. It can be seen that the

Fig. 7. (Color online) Initial surface error maps extending an ion beam diameter on (a) the flat surface and (b) the parabolic surface.

Fig. 8. (Color online) Path weight factor map according to a uni-
form scanning path (extending half of the ion beam diameter).

10 July 2009 / Vol. 48, No. 20 / APPLIED OPTICS 3935



residual surface errors are not greatly improved.
We can state that the high-precision final surface
could not be guaranteed with a unique damped factor
in engineering. Based on the method mentioned
above, the path weight factor and the surface weight
factor computed with Eqs. (8) and (9), and the extra
removal amounts γ0 ¼ 63:28nm and γ0 ¼ 126:56nm
are introduced in Eq. (7) for flat and parabolic optical
components. With the help of the LSQR algorithm,
the nonnegative dwell time solutions could be found
with W ¼ 0:35 and W ¼ 0:3. The residual surface
error is rms ¼ 4:11nm, PV ¼ 56:76nm, and rms ¼
16:58nm, PV ¼ 136:18nm, respectively. It can be
seen that the residual surface errors are greatly im-
proved relative to the results with the unique
damped factor. Figure 5 shows the dwell time solu-
tions, and Fig. 6 shows the residual surface error
maps after IBF. It is obvious that the revised
Eq. (7) can be used to find a perfect dwell time solu-
tion that ensures the final surface precision is at a
good level. However, it also can be seen that both
the dwell time and the residual surface error has a
spiky shape at edges, and residual surface errors
are higher at edges than centers, as shown in Figs. 5
and 6. Due to the acceptable ranges of velocity and
acceleration for the five-axis moving system, the
spiky dwell time should be checked to meet require-
ments before application to a practical system. The

residual surface error difference between center
and edge is also unfavorable for figuring stitching
optical components. As discussed in Section 4, the
Gerchberg extrapolation algorithm was used to
extend initial surface error maps to an ion beam dia-
meter, as shown in Fig. 7. Extra removal amount γ0 ¼
63:28nm and path weight factor and surface weight
factor were introduced to Eq. (7). Because of the same
scanning path, the path weight factor is the same for
the two simulations, as shown in Fig. 8. Based on the
LSQR algorithm, the nonnegative dwell time solu-
tion can be obtained with a smaller damped weight
factor W ¼ 0:02 for two components. As stated in
Subsection 4.A, the dwell time extended at half of
the ion beam diameter becomes smooth at the edges,
as shown in Fig. 9. The residual surface error will
also be smooth within a factual aperture, as shown
in Fig. 10. They are perfectly reduced to rms ¼
0:1nm, PV ¼ 1:9nm, and rms ¼ 0:08nm, PV ¼
1:39nm, respectively. All these demonstrate that a
high-precision final surface could be realized by
the combination of initial surface error map exten-
sion and revised matrix equation (7) with the help
of the LSQR algorithm.

6. Conclusion

The deconvolved process of dwell time was trans-
ferred to a revised matrix equation, in which the

Fig. 9. (Color online) Dwell time extending half of the ion beam diameter on (a) the flat surface and (b) the parabolic surface.

Fig. 10. (Color online) Residual surface error maps within a factual aperture after IBFon (a) the flat surface and (b) the parabolic surface.
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damped factor and the extra removal amount were
introduced to expand the freedom of dwell time, and
the path weight factor and surface error weight fac-
tor were introduced to take scanning path and initial
surface error into account. Combined with the Gerch-
berg bandlimited extrapolation algorithm for initial
surface error map extension, a high-precision final
surface could be obtained within a factual aperture.
The simulations of 50mm diameter flat and para-
bolic optical components show that the residual sur-
face errors were ideally reduced to rms ¼ 0:1nm and
rms ¼ 0:08nm, respectively. The conclusion is that a
perfect dwell time could be obtained by the combina-
tion of initial surface error map extension and re-
vised matrix equation (7) with the help of the LSQR
algorithm. The method in this paper can be used to
instruct the IBF process perfectly.

This work was supported by the National Natural
Science Foundation of China (NNSF) grant
10704072.
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