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Double photonic bandgaps (PBGs) can simultaneously appear when double dark resonances in uniform cold
atoms are spatially modulated by a resonance standing-wave. Theoretical calculations show that variable and
efficient coherent optical control of the PBGs can be achieved by modulating the coupling field and standing-
wave. The structures of double PBGs induced by the atomic coherence effect are better than those obtained in
the photonic crystal heterostructures. We anticipate that this scheme has potential applications in optical net-
works for dual-channel all-optical switching or a dual-frequency optical Bragg reflector. © 2010 Optical Soci-

ety of America
OCIS codes: 270.1670, 020.1670, 160.5293.

1. INTRODUCTION

Due to the potential application in the construction of
various functional devices, photonic crystal (PC) with a
periodic modulation of the dielectric constant has been in-
tensively studied [1-3]. In order to achieve the full poten-
tial of light channeling and modeling, the incorporation of
several different structures of photonic bandgaps (PBGs)
in one PC is desirable, and the PC having double PBGs is
the basic construction block for this type of device. It has
been reported that double PBGs have been observed in
the PC heterostructures [4-10] and microstrip structures
[11]. However, for the problem of lattice mismatch, the
achievement of deep gaps and sharp band edges in the PC
heterostructures remains a challenge, and it is difficult to
implement a PBG structure by microstrip technology to
reflect the optical waves. Meanwhile, for the apparent ad-
vantages, tunable PBG structure has attracted much at-
tention [12-16]. Using the thermo- and electro-optic ef-
fects of infiltrated liquid crystals [12,13] or nonlinear
optical effects in semiconductors [14,15], several schemes
have been supplied to tune the PBG structure. Compar-
ing with the modifications of the PBG which do not affect
the Brillouin zone, optical induced tunable PBG in uni-
form ultracold atoms was theoretically presented by em-
ploying electromagnetically induced transparency (EIT)
[17], in which the Brillouin zone structure can be modu-
lated by the parameters of standing-wave [16]. For the ob-
vious advantages of the solid-state materials, theoretical
extensions of the scheme based on the EIT in solid-state
materials were also reported [18,19]. Recently, the pro-
posal has been used to calculate the propagation of a light
pulse in ultracold atomic gas [20] and color centers in dia-
mond [21].

In this paper, we theoretically present that double
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PBGs can be induced by atomic coherence effect in a four-
level N-type cold atomic system. Due to the spatial peri-
odic modulation of the double dark states [22] induced by
a resonant standing-wave, one can obtain a pair of tun-
able PBGs which are symmetrical around the resonance
point of the probe field. Up until now, to reflect different
frequencies, various conventional PBG structures with
different periods have to be integrated in a PC [4-11],
while we find that double PBGs can be formed in the me-
dium with a single dispersion period induced by the
standing-wave, and the structures of PBGs are deeper
and the band edges are sharper than those obtained in
the PC heterostructures. Comparing with the three-level
A-type atomic configuration [16], our scheme has the ad-
vantages that one does not need to use the non-perfect
configuration of standing-wave and adjust the misalign-
ment of two counter-propagating beams. This proposal
may extend the capability of optical network and has po-
tential applications in the all-optical switching [23—-26]
and optical Bragg reflector [11].

2. ATOMIC MODEL AND EQUATIONS

The cold atomic system under consideration is shown in
Fig. 1, which can be described by a four-level N-type con-
figuration. The transitions |3)—|1), |3)—|2), and |4)—|2) are
electric dipole allowed, while the transitions |2)—|1) and
|4)—|1) are electric dipole forbidden. A weak probe field w,
with a Rabi frequency g=pus3,E,/2%, propagating in the z
direction, interacts with the transition |3)—|1), while the
coupling and standing fields resonantly drive the transi-
tions |3)—|2) and |4)—|2), respectively. The Rabi frequency
of the coupling field is Q,=pu3E./2%, and the standing-
wave along the z direction is formed by the forward and
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Fig. 1. A schematic diagram of the four-level N-type atomic
system.

backward waves with Rabi frequencies O =pu4oE /2% and
Qo= 4ok 9/ 20, respectively. Without loss of generality, we
take these Rabi frequencies to be real, and 2v; (i1=1,2,3)
represents the rate of spontaneous emission of the corre-
sponding transition as shown in Fig. 1.

In the framework of the semiclassical theory, using the
dipole approximation and the rotating wave approxima-
tion, the Hamiltonian H; of the system in the interaction
picture is

Hy=—10,(12)2] +[3)3] + [4)(4]) - 7u(g|1)(3] + Q. [2)(3]
+Q2)4] + H.c.), (1)

where A,=w,-w3; is the detuning of the probe field,
=0qe? + Qge 5% and k, is the wave vector of the forward
and backward fields. The probe field is so weak (g<<2y;)
that all atoms populate at the ground level |1) (p;1=1),
and levels |2), |3), and |4) remain empty regardless of the
intensities of the coupling and standing fields. Therefore,
we can ignore all effects which are related to the changes
in population and coherence at the transitions (p;;
=0; i,j=2,3,4). Including relaxation terms for the closed
system, the equations of motion for the density matrix of
the four-level system can be written as

p31= (4, = ¥31)p31 + 1) poy + 18,
pa1 = (1A, = T91)pay +iQcpsy + iQpar,

pa1 = (iAp = Y41)pa1 + 1po1, (2)

where y31=7y1+ %2, 741=73, and I'y; is the dephasing rate

for the transition |2)—|1) due to atomic collisions. For sim-

plicity, we assume y;=7yy=vy3=7/2 and then obtain the

steady solution of the element ps; as
P31 1

g Ay+iy+(A,+iy2) QM

3)

where M =(iA, - v21)(iA,— 7/2)+Qf. Form Eq. (3), one can
obtain the linear susceptibility x(A,,z) and refractive in-
dex €(A,,z) experienced by the probe field as

P31
e=1+y=1+37Ny—. (4)
g

Here N=Nq(\,/ 21)3 is the scaled average atomic density,
Ny represents the atomic density, and \, is the wave-
length of the probe field. It is worthwhile to point out that
the standing-wave intensity profile and its space period-
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icity do not alter the space distribution of cold atoms, ow-
ing to the weak probe field and the standing-wave with a
resonance frequency.

Due to the spatial periodic modulation induced by the
standing-wave, the weak probe field propagates as in a
one-dimensional grating with a periodicity a=\,/2 [27],
which is the half-wavelength of the standing-wave. We di-
vide the length @ into m equal parts and calculate the 2
X 2 unimodular transfer matrix of each part [28]. After
multiplying the matrices of all parts in a period, we nu-
merically calculated the transfer matrix M(A,) which rep-
resents the propagation of the probe field through a single
period. The translational invariance of the periodic me-
dium is fulfilled by imposing the Bloch condition on the
photonic eigenstates,

E*(z+a) A E*(2) e E*(2) 5

E(z+a)] (&) E(2)) " \e*E~(2))’ )
where E* and E~ are the electric field amplitudes of the
forward and backward (Bragg reflected) propagating
probes, respectively, and k=«'+ix” is the Bloch complex
wave vector of the corresponding probe photonic states.
The one-dimensional grating structure is obtained from
the solution of the corresponding determinantal equation
eZ‘K“—Tr[M(Ap)]e“‘“+1=O (det M=1) and we note both «

and -« are the solutions of the equation. As a result, we
can simply have

Tr[M(Apn} ©

Kka = +cos™!
2

The above discussion is related to Bloch modes for the
probe field in an infinite periodic stack, while one must
pay attention to the propagation through a sample with a
finite length in real experiments [29]. Therefore, we con-
sider the corresponding reflectivity and transitivity spec-
tra of the probe field which propagates through a sample
of thickness L=Na, where N is the number of the
standing-wave periods. The total transfer matrix My, of a
sample with thickness L=Na (N> 1) is given in terms of a
single period transfer matrix M as M, (N)zMN . Because M
is unimodular, the following closed expression for My
holds true:

sin(N«ka) sin[ (N - l)Ka]I

sin(ka)

My, =

(7)

sin(ka)

where [ is the unity matrix. With the compact expression,
we have the ability to calculate the reflection (Ry) and
transmission (7y) amplitudes for the length L in terms of
the complex Bloch wave vector « and the element M;; of
the matrix M,

MN(12) M12 Sin(NKa)
N7 Mygs My sin(Nka) - sin[(N - 1)ka]’
1 sin(ka)
Ty (8)

" My@s Moy, sin(N«a) - sin[(N - 1)ka]’

Using Eq. (8), we can obtain the reflectivity, transmissiv-
ity, and absorption of the probe field by calculating |Ryl?,
|TnI%, and A=1-|Ry|?—|Tyl|?, respectively.
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3. RESULTS AND DISCUSSION

In the following, we demonstrate the calculated results
which correspond to the transitions of cold Cs atoms as
shown in Fig. 1, and chose 27/27=5.234 MHz and
I'y1/27=1 kHz. At first, we present the result of «xa for a
configuration of the perfect standing-wave 0;=0,=20vyin
Fig. 2(a). An investigation of Fig. 2(a) shows that two for-
bidden gaps open up in the frequency range for which «’
=m/a and <" # 0, and the PBGs are symmetrical around a
resonance point. It is worthwhile to point out that double
PBGs arise in the homogeneous cold atoms with a single
dispersion period induced by the standing-wave, which is
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Fig. 2. (Color online) (a) Bandgap structure for the probe field in
a homogeneous sample of ultracold Cs (Ny=5 X 102 cm~2) in the
presence of coupling field (),=40y and a periodic modulation in-
duced by a standing-wave ;=,=20y. Real and imaginary
parts of Bloch wave vector of probe field are shown. (b) Real and
imaginary parts of the susceptibility x at probe frequency A, in
the control of the coupling field ),=407y and in different positions
of the standing-wave: (i) Q,=0; (i) Q,=207y; (iii) Q,=407y. The in-
sets show the corresponding intensity profile of standing-wave
and a magnified part of the same part of real part of susceptibil-
ity x.
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different from other proposals using various conventional
PBG structures with different periods in the PC hetero-
structures [4-10]. In order to interpret this result, we
supply an analysis in the dressed-state picture of the sys-
tem. The interaction Hamiltonian for the atoms which are
driven by the coupling and standing fields can be written
as

0 0 O
Hy=-#Q. 0 0| ©)
Q, 0 0

From Eq. (9), the three dressed sub-levels, generated by
the coupling and standing fields, are

—

V2 Q, Q,
[+)=—12)+ —I[3)+ —[4) |,
2 a_ a_

=

\ 2 Qc Qs
=) =712+ —[3)+—[4)],
2 a, a,

Q Q
0y =~ —[3) + —I4), (10)
a, a,

where a,=+ \J’QE+QE and ay=0 are the corresponding ei-
genvalues of the dressed states. It is obvious that the
dressed states change periodically in space, and the ei-
genvalues which correspond to the absorption peaks of
the probe field have the same period. Due to the interfer-
ence effects of the dressed states, one can achieve double
dark resonances [22], which lead to a pair of transparency
points at the frequencies A,==||. With the purpose to
further clarify this underlying physics, we check the ab-
sorptions of the probe field at different points along z with
different intensities of the standing-wave in Fig. 2(b). In
Fig. 2(b), one can see that one dark resonance changes to
double dark resonances as one moves along z from nodes
to antinodes of the standing-wave, and this change has a
periodic fashion which is the same as the intensity pat-
tern of the standing-wave. Therefore, the probe absorp-
tion is modified periodically near the double dark reso-
nances, and the dispersion is also modulated in the same
period due to the Kramer—Kronig relations [30]. As a re-
sult, the probe field propagates as in a multi-layer peri-
odic structure and double PBGs are expected to occur.
Secondly, we supply the reflectivity and transmissivity
of the probe field which experiences ultracold atomic gas
with a length of L=2 mm in Fig. 3. In the dressed-state
picture of the coupling field ., standing-wave (g, and
levels |2), |3), and |4), the probe field has three absorption
points which correspond to the three eigenvalues of the
dressed states. The first absorption point is at the reso-
nance frequency, and the other two absorption points lo-
cate at frequencies A,= \J’Qf+Qf and Ap=—\s’Qf+Q§.
Therefore, the absorption of the probe field for large de-
tuning is not negligible, and the sum of transmissivity
and reflectivity in Fig. 3 is not equal to 1. Owing to effi-
cient constructive interference of in-phase contributions
from multiple reflections between adjacent layers, the re-
flectivity of probe around the resonance point becomes
large. The structures of PBGs agree with the results in
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Fig. 3. Reflectivity of induced bandgap in a sample of length
L=2 mm. The inset shows the corresponding transmissivity. All
other parameters are the same as in Fig. 2(a).

Fig. 2(a), and the bandgaps are all contained in the trans-
parency windows in Fig. 2(b). We demonstrate that
atomic coherence effect can induce double PBGs with a
good structure, which is difficult to observe in the PC het-
erostructures due to the problem of lattice mismatch
[4-10]. In our assumption, the configuration of the
standing-wave is perfect (2;=5) which is different from
the specific standing-wave configuration in the three-level
A-type atomic system (5= 0.8();) [16]. The reason is that
there is no absorption due to the EIT at the nodes of the
perfect standing-wave in our system, while it has to use
quasi-nodes of the non-perfect standing-wave to overcome
the detrimental effects of absorption in the three-level
atomic systems. Because the PBGs locate at opposite fre-
quency regions around the resonance point, we do not
need to adjust the misalignment of two counter-
propagating beams to change the frequency region of the
PBG from above to below resonance or vice versa. Based
on these considerations, the experimental simplicity and
stability of our scheme are better than those of the three-
level atomic system [16]. It should be noted that our
scheme is related to the Bragg scheme in the four-level
atomic system [31], in which the frequency of the
standing-wave is far detuning. In the four-level atomic
system, the spatial periodic modulation of the probe dis-
persion is induced by the EIT enhanced nonlinear index,
and the perfect PBG appears in the transparency window
where the absorption is absolutely canceled, while in our
scheme the spatial modulation of probe dispersion created
by a resonant standing-wave is related to the spatial
modulation of nonlinear absorption, and there are double
PBGs induced by double dark states.

We further present in Fig. 4 how to adjust the positions
and widths of PBGs by changing intensities of the cou-
pling and standing fields. With a stronger coupling field,
the frequency range of the PBG becomes larger, and the
frequency position becomes more far away from the reso-
nance point. By adjusting the intensity of the standing-
wave, one can find the same results as the coupling field.
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reflectivity

Fig. 4. Tuning of the bandgap reflectivity for different intensi-
ties of the coupling and standing fields. The sample has a length
L=2 mm. All other parameters are the same as in Fig. 2(a).

These results can be understood that the transparency
window of dark resonance has a wider frequency range
and the transparency point becomes more far away from
the resonance point when the fields become stronger. It
also demonstrates that for larger intensities of the cou-
pling and standing fields, one can obtain a larger reflec-
tivity of the probe field and a better gap structure, which
are induced by the more highly effective quantum coher-
ence and interference effects of strong fields.

Because this scheme can obtain double PBGs simulta-
neously, one can switch off a pair of light signals with dif-
ferent frequencies. Since the frequency region of the PBG
is contained in the transparency window, in the absence
of the backward field, double light signals can pass the
medium with a small loss. As the standing-wave is
formed, both of the signals would be reflected; therefore,
our scheme is suitable to form a dual-channel all-optical
switching [26]. Owing to the reflectivity of probe as shown
in Fig. 4, our proposal can also be used as a tunable dual-
frequency optical Bragg reflector [11]. For the general
physics underlying, it should be straightforward to con-
sider the extension of our scheme to achieve double PBGs
in condensed matter systems [32], which may offer more
flexibilities and functions in practical devices.

4. CONCLUSIONS

In conclusion, we theoretically present that double PBGs
can be simultaneously induced by the atomic coherence
effects in ultracold atomic gas. A variable and efficient co-
herent optical control of PBGs can be achieved by the
modulating the intensities of coupling and standing
fields. The structure of double PBGs induced by a single
dispersion period in our scheme is better than that ob-
tained in the PC heterostructures, and our calculations
hold more potential for effective control of the light-
matter interaction and its applications in optical net-
works.
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