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Double photonic bandgaps (PBGs) can simultaneously appear when double dark resonances in uniform cold
atoms are spatially modulated by a resonance standing-wave. Theoretical calculations show that variable and
efficient coherent optical control of the PBGs can be achieved by modulating the coupling field and standing-
wave. The structures of double PBGs induced by the atomic coherence effect are better than those obtained in
the photonic crystal heterostructures. We anticipate that this scheme has potential applications in optical net-
works for dual-channel all-optical switching or a dual-frequency optical Bragg reflector. © 2010 Optical Soci-
ety of America
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. INTRODUCTION
ue to the potential application in the construction of
arious functional devices, photonic crystal (PC) with a
eriodic modulation of the dielectric constant has been in-
ensively studied [1–3]. In order to achieve the full poten-
ial of light channeling and modeling, the incorporation of
everal different structures of photonic bandgaps (PBGs)
n one PC is desirable, and the PC having double PBGs is
he basic construction block for this type of device. It has
een reported that double PBGs have been observed in
he PC heterostructures [4–10] and microstrip structures
11]. However, for the problem of lattice mismatch, the
chievement of deep gaps and sharp band edges in the PC
eterostructures remains a challenge, and it is difficult to

mplement a PBG structure by microstrip technology to
eflect the optical waves. Meanwhile, for the apparent ad-
antages, tunable PBG structure has attracted much at-
ention [12–16]. Using the thermo- and electro-optic ef-
ects of infiltrated liquid crystals [12,13] or nonlinear
ptical effects in semiconductors [14,15], several schemes
ave been supplied to tune the PBG structure. Compar-

ng with the modifications of the PBG which do not affect
he Brillouin zone, optical induced tunable PBG in uni-
orm ultracold atoms was theoretically presented by em-
loying electromagnetically induced transparency (EIT)
17], in which the Brillouin zone structure can be modu-
ated by the parameters of standing-wave [16]. For the ob-
ious advantages of the solid-state materials, theoretical
xtensions of the scheme based on the EIT in solid-state
aterials were also reported [18,19]. Recently, the pro-

osal has been used to calculate the propagation of a light
ulse in ultracold atomic gas [20] and color centers in dia-
ond [21].
In this paper, we theoretically present that double
0740-3224/10/081518-5/$15.00 © 2
BGs can be induced by atomic coherence effect in a four-
evel N-type cold atomic system. Due to the spatial peri-
dic modulation of the double dark states [22] induced by
resonant standing-wave, one can obtain a pair of tun-

ble PBGs which are symmetrical around the resonance
oint of the probe field. Up until now, to reflect different
requencies, various conventional PBG structures with
ifferent periods have to be integrated in a PC [4–11],
hile we find that double PBGs can be formed in the me-
ium with a single dispersion period induced by the
tanding-wave, and the structures of PBGs are deeper
nd the band edges are sharper than those obtained in
he PC heterostructures. Comparing with the three-level
-type atomic configuration [16], our scheme has the ad-
antages that one does not need to use the non-perfect
onfiguration of standing-wave and adjust the misalign-
ent of two counter-propagating beams. This proposal
ay extend the capability of optical network and has po-

ential applications in the all-optical switching [23–26]
nd optical Bragg reflector [11].

. ATOMIC MODEL AND EQUATIONS
he cold atomic system under consideration is shown in
ig. 1, which can be described by a four-level N-type con-
guration. The transitions �3�– �1�, �3�– �2�, and �4�– �2� are
lectric dipole allowed, while the transitions �2�– �1� and
4�– �1� are electric dipole forbidden. A weak probe field �p
ith a Rabi frequency g=�31Ep /2�, propagating in the z
irection, interacts with the transition �3�– �1�, while the
oupling and standing fields resonantly drive the transi-
ions �3�– �2� and �4�– �2�, respectively. The Rabi frequency
f the coupling field is �c=�32Ec /2�, and the standing-
ave along the z direction is formed by the forward and
010 Optical Society of America
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ackward waves with Rabi frequencies �1=�42E1 /2� and
2=�42E2 /2�, respectively. Without loss of generality, we

ake these Rabi frequencies to be real, and 2�i �i=1,2,3�
epresents the rate of spontaneous emission of the corre-
ponding transition as shown in Fig. 1.

In the framework of the semiclassical theory, using the
ipole approximation and the rotating wave approxima-
ion, the Hamiltonian HI of the system in the interaction
icture is

HI = − ��p��2��2� + �3��3� + �4��4�� − ��g�1��3� + �c�2��3�

+ �s
��2��4� + H.c.�, �1�

here �p=�p−�31 is the detuning of the probe field, �s
�1eiksz+�2e−iksz, and ks is the wave vector of the forward
nd backward fields. The probe field is so weak �g�2�1�
hat all atoms populate at the ground level �1� �	11=1�,
nd levels �2�, �3�, and �4� remain empty regardless of the
ntensities of the coupling and standing fields. Therefore,
e can ignore all effects which are related to the changes

n population and coherence at the transitions �	ij
0; i , j=2,3,4�. Including relaxation terms for the closed
ystem, the equations of motion for the density matrix of
he four-level system can be written as

	̇31 = �i�p − �31�	31 + i�c	21 + ig,

	̇21 = �i�p − 
21�	21 + i�c	31 + i�s
�	41,

	̇41 = �i�p − �41�	41 + i�s	21, �2�

here �31=�1+�2, �41=�3, and 
21 is the dephasing rate
or the transition �2�– �1� due to atomic collisions. For sim-
licity, we assume �1=�2=�3=� /2 and then obtain the
teady solution of the element 	31 as

	31

g
= −

1

�p + i� + ��p + i�/2��c
2/M

, �3�

here M= �i�p−�21��i�p−� /2�+�s
2. Form Eq. (3), one can

btain the linear susceptibility ���p ,z� and refractive in-
ex ���p ,z� experienced by the probe field as

� = 1 + � = 1 + 3
N�
	31

g
. �4�

ere N=N0��p /2
�3 is the scaled average atomic density,
0 represents the atomic density, and �p is the wave-

ength of the probe field. It is worthwhile to point out that
he standing-wave intensity profile and its space period-

ig. 1. A schematic diagram of the four-level N-type atomic
ystem.
city do not alter the space distribution of cold atoms, ow-
ng to the weak probe field and the standing-wave with a
esonance frequency.

Due to the spatial periodic modulation induced by the
tanding-wave, the weak probe field propagates as in a
ne-dimensional grating with a periodicity a=�s /2 [27],
hich is the half-wavelength of the standing-wave. We di-
ide the length a into m equal parts and calculate the 2
2 unimodular transfer matrix of each part [28]. After
ultiplying the matrices of all parts in a period, we nu-
erically calculated the transfer matrix M��p� which rep-

esents the propagation of the probe field through a single
eriod. The translational invariance of the periodic me-
ium is fulfilled by imposing the Bloch condition on the
hotonic eigenstates,

�E+�z + a�

E−�z + a�� = M��p��E+�z�

E−�z�� = �ei�aE+�z�

ei�aE−�z�� , �5�

here E+ and E− are the electric field amplitudes of the
orward and backward (Bragg reflected) propagating
robes, respectively, and �=��+ i�� is the Bloch complex
ave vector of the corresponding probe photonic states.
he one-dimensional grating structure is obtained from

he solution of the corresponding determinantal equation
2i�a−Tr�M��p�	ei�a+1=0 �det M=1� and we note both �
nd −� are the solutions of the equation. As a result, we
an simply have

�a = ± cos−1
Tr�M��p�	

2 � . �6�

he above discussion is related to Bloch modes for the
robe field in an infinite periodic stack, while one must
ay attention to the propagation through a sample with a
nite length in real experiments [29]. Therefore, we con-
ider the corresponding reflectivity and transitivity spec-
ra of the probe field which propagates through a sample
f thickness L=Na, where N is the number of the
tanding-wave periods. The total transfer matrix M�N� of a
ample with thickness L=Na �N�1� is given in terms of a
ingle period transfer matrix M as M�N�=MN. Because M
s unimodular, the following closed expression for M�N�
olds true:

M�N� =
sin�N�a�

sin��a�
M −

sin��N − 1��a	

sin��a�
I, �7�

here I is the unity matrix. With the compact expression,
e have the ability to calculate the reflection �RN� and

ransmission �TN� amplitudes for the length L in terms of
he complex Bloch wave vector � and the element Mij of
he matrix M,

RN =
MN�12�

MN�22�
=

M12 sin�N�a�

M22 sin�N�a� − sin��N − 1��a	
,

TN =
1

MN�22�
=

sin��a�

M22 sin�N�a� − sin��N − 1��a	
. �8�

sing Eq. (8), we can obtain the reflectivity, transmissiv-
ty, and absorption of the probe field by calculating �RN�2,
T �2, and A=1− �R �2− �T �2, respectively.
N N N
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. RESULTS AND DISCUSSION
n the following, we demonstrate the calculated results
hich correspond to the transitions of cold Cs atoms as

hown in Fig. 1, and chose 2� /2
=5.234 MHz and
21/2
�1 kHz. At first, we present the result of �a for a
onfiguration of the perfect standing-wave �1=�2=20� in
ig. 2(a). An investigation of Fig. 2(a) shows that two for-
idden gaps open up in the frequency range for which ��

 /a and ���0, and the PBGs are symmetrical around a
esonance point. It is worthwhile to point out that double
BGs arise in the homogeneous cold atoms with a single
ispersion period induced by the standing-wave, which is

ig. 2. (Color online) (a) Bandgap structure for the probe field in
homogeneous sample of ultracold Cs �N0=5�1012 cm−3� in the

resence of coupling field �c=40� and a periodic modulation in-
uced by a standing-wave �1=�2=20�. Real and imaginary
arts of Bloch wave vector of probe field are shown. (b) Real and
maginary parts of the susceptibility � at probe frequency �p in
he control of the coupling field �c=40� and in different positions
f the standing-wave: (i) �s=0; (ii) �s=20�; (iii) �s=40�. The in-
ets show the corresponding intensity profile of standing-wave
nd a magnified part of the same part of real part of susceptibil-
ty �.
ifferent from other proposals using various conventional
BG structures with different periods in the PC hetero-
tructures [4–10]. In order to interpret this result, we
upply an analysis in the dressed-state picture of the sys-
em. The interaction Hamiltonian for the atoms which are
riven by the coupling and standing fields can be written
s

HI = − �

0 �c �s

�

�c 0 0

�s 0 0
� . �9�

rom Eq. (9), the three dressed sub-levels, generated by
he coupling and standing fields, are

�+ � =
�2

2 ��2� +
�c

�−
�3� +

�s

�−
�4�� ,

�− � =
�2

2 ��2� +
�c

�+
�3� +

�s

�+
�4�� ,

�0� = −
�s

�

�+
�3� +

�c

�+
�4�, �10�

here �±= ±��c
2+�s

2 and �0=0 are the corresponding ei-
envalues of the dressed states. It is obvious that the
ressed states change periodically in space, and the ei-
envalues which correspond to the absorption peaks of
he probe field have the same period. Due to the interfer-
nce effects of the dressed states, one can achieve double
ark resonances [22], which lead to a pair of transparency
oints at the frequencies �p= ± ��s�. With the purpose to
urther clarify this underlying physics, we check the ab-
orptions of the probe field at different points along z with
ifferent intensities of the standing-wave in Fig. 2(b). In
ig. 2(b), one can see that one dark resonance changes to
ouble dark resonances as one moves along z from nodes
o antinodes of the standing-wave, and this change has a
eriodic fashion which is the same as the intensity pat-
ern of the standing-wave. Therefore, the probe absorp-
ion is modified periodically near the double dark reso-
ances, and the dispersion is also modulated in the same
eriod due to the Kramer–Kronig relations [30]. As a re-
ult, the probe field propagates as in a multi-layer peri-
dic structure and double PBGs are expected to occur.

Secondly, we supply the reflectivity and transmissivity
f the probe field which experiences ultracold atomic gas
ith a length of L=2 mm in Fig. 3. In the dressed-state
icture of the coupling field �c, standing-wave �s, and
evels �2�, �3�, and �4�, the probe field has three absorption
oints which correspond to the three eigenvalues of the
ressed states. The first absorption point is at the reso-
ance frequency, and the other two absorption points lo-
ate at frequencies �p=��c

2+�s
2 and �p=−��c

2+�s
2.

herefore, the absorption of the probe field for large de-
uning is not negligible, and the sum of transmissivity
nd reflectivity in Fig. 3 is not equal to 1. Owing to effi-
ient constructive interference of in-phase contributions
rom multiple reflections between adjacent layers, the re-
ectivity of probe around the resonance point becomes

arge. The structures of PBGs agree with the results in
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ig. 2(a), and the bandgaps are all contained in the trans-
arency windows in Fig. 2(b). We demonstrate that
tomic coherence effect can induce double PBGs with a
ood structure, which is difficult to observe in the PC het-
rostructures due to the problem of lattice mismatch
4–10]. In our assumption, the configuration of the
tanding-wave is perfect ��1=�2� which is different from
he specific standing-wave configuration in the three-level
-type atomic system ��2�0.8�1� [16]. The reason is that

here is no absorption due to the EIT at the nodes of the
erfect standing-wave in our system, while it has to use
uasi-nodes of the non-perfect standing-wave to overcome
he detrimental effects of absorption in the three-level
tomic systems. Because the PBGs locate at opposite fre-
uency regions around the resonance point, we do not
eed to adjust the misalignment of two counter-
ropagating beams to change the frequency region of the
BG from above to below resonance or vice versa. Based
n these considerations, the experimental simplicity and
tability of our scheme are better than those of the three-
evel atomic system [16]. It should be noted that our
cheme is related to the Bragg scheme in the four-level
tomic system [31], in which the frequency of the
tanding-wave is far detuning. In the four-level atomic
ystem, the spatial periodic modulation of the probe dis-
ersion is induced by the EIT enhanced nonlinear index,
nd the perfect PBG appears in the transparency window
here the absorption is absolutely canceled, while in our

cheme the spatial modulation of probe dispersion created
y a resonant standing-wave is related to the spatial
odulation of nonlinear absorption, and there are double
BGs induced by double dark states.
We further present in Fig. 4 how to adjust the positions

nd widths of PBGs by changing intensities of the cou-
ling and standing fields. With a stronger coupling field,
he frequency range of the PBG becomes larger, and the
requency position becomes more far away from the reso-
ance point. By adjusting the intensity of the standing-
ave, one can find the same results as the coupling field.
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ig. 3. Reflectivity of induced bandgap in a sample of length
=2 mm. The inset shows the corresponding transmissivity. All
ther parameters are the same as in Fig. 2(a).
hese results can be understood that the transparency
indow of dark resonance has a wider frequency range
nd the transparency point becomes more far away from
he resonance point when the fields become stronger. It
lso demonstrates that for larger intensities of the cou-
ling and standing fields, one can obtain a larger reflec-
ivity of the probe field and a better gap structure, which
re induced by the more highly effective quantum coher-
nce and interference effects of strong fields.

Because this scheme can obtain double PBGs simulta-
eously, one can switch off a pair of light signals with dif-
erent frequencies. Since the frequency region of the PBG
s contained in the transparency window, in the absence
f the backward field, double light signals can pass the
edium with a small loss. As the standing-wave is

ormed, both of the signals would be reflected; therefore,
ur scheme is suitable to form a dual-channel all-optical
witching [26]. Owing to the reflectivity of probe as shown
n Fig. 4, our proposal can also be used as a tunable dual-
requency optical Bragg reflector [11]. For the general
hysics underlying, it should be straightforward to con-
ider the extension of our scheme to achieve double PBGs
n condensed matter systems [32], which may offer more
exibilities and functions in practical devices.

. CONCLUSIONS
n conclusion, we theoretically present that double PBGs
an be simultaneously induced by the atomic coherence
ffects in ultracold atomic gas. A variable and efficient co-
erent optical control of PBGs can be achieved by the
odulating the intensities of coupling and standing
elds. The structure of double PBGs induced by a single
ispersion period in our scheme is better than that ob-
ained in the PC heterostructures, and our calculations
old more potential for effective control of the light-
atter interaction and its applications in optical net-
orks.
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