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Abstract
The imaging performance of a hybrid refractive–diffractive system is limited by the diffractive
efficiency of the diffractive optical element (DOE). This phenomenon is explained in this paper
by the wavefront deformation from the ideal wavefront at the exit pupil. The modified phase
function model is developed to correct the wavefront deformation, and the application of the
model is extended to the harmonic diffractive optical element (HOE) and the multi-layer
diffractive optical element (MOE) as well. The general phase delay factor is derived for DOE,
HOE and MOE. The validity of our model is verified by comparison with the weighted
summation model of orders using a simple hybrid optical system example. Finally, the
performance of the hybrid system with a HOE for dual waveband is evaluated.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffractive optical elements have been widely used in optical
systems for the visible and IR wavebands to correct the
chromatic aberration, reduce the secondary spectrum and
produce an arbitrary phase distribution [1–3]. A diffractive
lens with a continuous surface relief can theoretically achieve
100% diffractive efficiency at nominal wavelength. However,
the energy scattered into additional parasitic diffraction orders
will limit the imaging performance of hybrid systems when a
different wavelength is chosen. The diffractive efficiency of
the prime order (the first order generally) will decrease due to
the appearance of the other orders. The imaging performance
of hybrid systems can be evaluated by summating all the orders
with their diffractive efficiencies as the weight [4–6]. However,
the calculation of diffractive efficiency and the summation is

3 Author to whom any correspondence should be addressed.

complex and impractical for all orders in this method. In
this paper, the effect of diffractive efficiency is explained
theoretically in terms of the wavefront deformation at the
exit pupil, and a more practical and tractable model [7] is
introduced to evaluate the imaging performance of hybrid
refractive–diffractive systems. With this model the actual
wavefront can be directly computed by the optical design
software package to facilitate the evaluation of the performance
of hybrid systems.

The theoretical coherence between the modified phase
function model and the weighted summation model is
described in section 2. The general expression of the phase
delay factor for DOE, HOE and MOE is derived and a unified
model is established in section 3. An illustrative example is
given in section 4 to validate our approach by comparing our
results with that of the weighted summation model of orders.
Our conclusions and remarks are put forth in section 5.
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2. Fundamentals of the modified phase function
model

Most optical design software codes model the DOE as an ideal
thin phase screen over the substrate surface, and trace the ray
with the grating equation. The phase function of the DOE
is given by the following polynomial in common software
packages:

φ0(r) = 2π

λ0

N∑

i=1

air 2i = 2π(Ar 2 + Br 4 + · · ·), (1)

where i is the number of the term in the polynomial, φ0(r) is
the phase at radius r for the nominal wavelength of λ0, and the
maximum value of N used in the software package is usually
less than five. In equation (1), A = a1/λ0, B = b1/λ0, . . .,
and if the variable r is replaced by ξ(r) = Ar 2 + Br 4 · · ·, the
phase function can be written as

φ0(ξ) = 2πξ. (2)

The phase function can be modulo 2π to make the diffractive
lens sufficiently thin:

|φ0(ξ)|2π = 2π(ξ + j), j = 0,±1,±2, . . . , (3)

and r j , the radius of each zone can be obtained by setting
ξ + j = 0. When a different wavelength λ is chosen, a phase
delay, α = λ0(n − 1)/λ(n0 − 1), will be induced, where n0

and n are the refractive index of the optical material used for
the diffractive lens at λ0 and λ, and the actual phase function
for λ becomes

φ(ξ) = α|φ0(ξ)|2π = 2πα(ξ + j). (4)

It is known that the pupil function of the system can be written
as

P(x, y) = E(x, y) exp[iφ(x, y)], (5)

where E(x, y) represents the amplitude distribution at the exit
pupil, and x and y are the coordinates at pupil. φ(x, y)

represents the phase function corresponding with φ(ξ), and
ξ(r) can be rewritten as ξ(x, y) because of r 2 = x2 + y2.
If the entrance pupil is illuminated with a constant amplitude
light beam we will have E(x, y) = 1, and the actual pupil
function at λ can be obtained from equations (4) and (5):

P(ξ) = exp[iφ(ξ)] = exp[i2πα(ξ + j)]. (6)

This is a periodic function where the period is 1, so it can be
expanded as a Fourier series

P(ξ) =
+∞∑

m=−∞
Cm exp(i2πmξ)

Cm = sinc(α − m) exp[iπ(α − m)],
(7)

where m is integer; the pupil function can be decomposed to
an infinite number of functions, each of them representing one
diffractive order, m. The amplitude of each order is Cm and the
diffractive efficiency of this order is [8]

ηm = CmC∗
m = sinc2(α − m), (8)

where sinc(x) = sin(πx)/(πx). The imaging performance
of the hybrid system can be considered to be affected by
all the diffractive orders, so the modulation transfer function
(MTF) of the system for λ can be obtained by the summation
of each order’s MTF with their diffractive efficiency as the
weight [4–6]:

MTF(λ) =
+∞∑

m=−∞
(ηmMTFm). (9)

The MTF for each order can be calculated through the
autocorrelation of its pupil function, so equation (9) can be
rewritten as

MTF(λ) =
∞∑

m=−∞

[
ηm

∣∣∣∣

∫∫ ∞
−∞ Pm(x, y)P∗

m(x + λR fx , y+λR fy) dx dy
∫∫ ∞

−∞ |Pm(x, y)|2 dx dy

∣∣∣∣

]
,

(10)

where Pm represents the pupil function for each order and is
given by equation (7) and the diffractive efficiency is given by
equation (8). Hence, the MTF can be written as

MTF(λ) =
∞∑

m=−∞

[
ηm

∣∣∣∣

∫∫ ∞
−∞ |Cm|2 exp(i2πmξ) exp(−i2πmξ ′) dx dy

∫∫ ∞
−∞ |Cm|2 dx dy

∣∣∣∣
]

=
∣∣∣∣
∫ ∫ ∞

−∞

∞∑

m=−∞
Cm exp(i2πmξ)

×
∞∑

m=−∞
C∗

m exp(−i2πmξ ′) dx dy

∣∣∣∣, (11)

where ξ = ξ(x, y), ξ ′ = ξ(x + λR fx , y + λR fy), fx and fy

are the spatial frequencies at the x and y directions respectively
and R is the radius of the wavefront. From equation (11), the
term following the symbol of summation can be transformed
into a format similar to equation (4) by an inverse Fourier
transformation:

MTF(λ) =
∣∣∣∣
∫ ∫ ∞

−∞
exp(i2παξ) exp(−i2παξ ′) dx dy

∣∣∣∣

=
∣∣∣∣
∫ ∫ ∞

−∞
exp(i2πξ) exp(i2π(α − 1)ξ)

× exp(−i2πξ ′) exp[−i2π(α − 1)ξ ′] dx dy

∣∣∣∣

=
∣∣∣∣
∫ ∫ ∞

−∞
exp{i[φ0(ξ) + �φ(ξ)]}

× exp{−i[φ0(ξ
′) + �φ(ξ ′)]} dx dy

∣∣∣∣, (12)

where

�φ(ξ) = φ(ξ) − |φ0(ξ)|2π = 2π(α − 1)(ξ + j), (13)

and represents the additional phase difference arising from
the undesired wavelength dispersion. From equation (13)
the actual phase function can be modified based on the ideal
phase function, and a modified phase function model can be
established

�φ(ξ) = φ(ξ) − |φ0(ξ)|2π φ(ξ) = φ0(ξ) + �φ(ξ).

(14)
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Therefore, the effect of the diffraction orders and
efficiency can be represented by the additional phase difference
from the ideal phase function. It is known that the real
wavefront (OPD) deviates from the ideal one due to the phase
change according to the relationship between the OPD and
phase function

OPD(x, y) = λ

2π
φ(x, y). (15)

Thus the real performance of system can be evaluated
accurately by correcting the actual wavefront using the new
model. The calculation of the diffractive efficiency for all
the diffractive orders is not required in our method, and the
modification to the phase function can be processed based
upon the ideal phase function offered by the common optical
design software packages, making this model more compatible
with commercial optical design software packages and more
computationally tractable than the weighted summation model
of orders.

3. Unified model for three types of diffractive element

The formulae for the diffractive efficiency of DOE, HOE and
MOE shown in figure 1 have similar form to equation (9),
except for the phase delay factor, α. In this section, the phase
delay factor of the double-layer diffractive element will be
derived to achieve the general form of the phase delay factor for
the three types of diffractive element. The ideal phase function
for the double-layer diffractive element can be written as [9]

φ0(r) = 2π

λ0
[(n10 − 1)d1(r) + (n20 − 1)d2(r)], (16)

where n10 and n20 represent the refractive indices of the two
materials at nominal wavelength, λ0, and d1(r) and d2(r)

represent the profile function of the two DOEs. The real phase
for wavelength λ is,

φ(r) = 2π

λ
[(n1 − 1)d1(r) + (n2 − 1)d2(r)], (17)

where n1 and n2 are the refractive indices of two materials at
nonnominal wavelength λ. From equations (16) and (17) we
have

φ(r) = λ0

λ

(n1 − 1)d1(r) + (n2 − 1)d2(r)

(n10 − 1)d1(r) + (n20 − 1)d2(r)
φ0(r), (18)

so the phase delay factor can be written as,

αMOE = λ0

λ

(n1 − 1)d1(r) + (n2 − 1)d2(r)

(n10 − 1)d1(r) + (n20 − 1)d2(r)
. (19)

For a harmonic diffractive lens which has a multi-layer
configuration, the nominal wavelength λ0 should be replaced
by pλ0, where p is the resonant order, and the phase delay
factor becomes

α = pλ0

λ

(n1 − 1)d1(r) + (n2 − 1)d2(r)

(n10 − 1)d1(r) + (n20 − 1)d2(r)
. (20)

Figure 1. Three types of diffractive elements.

Equation (20) represents the phase delay of the double-layer
diffractive element in general form, and if three or more
layers are needed, the phase delay for a multi-layer diffractive
element can be obtained by adding more d(r) terms into
equation (20). If d1(r) = 0, or d2(r) = 0, or n1 = n2, the
double-layer diffractive element is simplified to a HOE and the
phase delay becomes,

αHOE = pλ0

λ

(n − 1)

(n0 − 1)
, (21)

and if p = 1 simultaneously, the expression represents the
phase delay of a DOE

αDOE = λ0

λ

n − 1

n0 − 1
. (22)

So the phase delay of three types of diffractive elements can be
obtained from equation (20). Consequently, the unified form of
the model for three different types of diffractive elements can
be derived from equations (13) and (20) as

�φ(ξ) = φ(ξ) − |φ0(ξ)|2π

= 2π

(
pλ0

λ

(n1 − 1)d1(r) + (n2 − 1)d2(r)

(n10 − 1)d1(r) + (n20 − 1)d2(r)
− 1

)
(ξ + j).

(23)

According to equation (23), the modified phase function model
can be used to evaluate the imaging performance of the
hybrid refractive–diffractive system with any type of diffractive
elements, including DOE, HOE and MOE, and this will be
shown by the following example.

4. Example and discussions

The following example is intended to validate our approach
although it may not be a really practical optical system. The
specifications of the system are: effective focal length 50 mm,
F/2.5 and nominal wavelength 2.0 μm. Only the normal
incidence case is considered, so as to ignore the effect of the
angle of incidence. A 17-zone diffractive lens on the back
surface of a plane-parallel plate is employed to correct the
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Figure 2. Layout of the hybrid system.

combined aberrations and the material of the diffractive lens is
chosen as BK7. The system layout is shown in figure 2. Here
the optical system design program ZEMAX4 is used to model
and analyze this system.

The models of the DOE, HOE and MOE are established
with this system. According to equation (23), the additional
phase departure �φ is computed by three models, and the
actual phase is obtained by adding the departure to the ideal
phase offered by ZEMAX. In the DOE model the actual
phase of two nonnominal wavelengths of 1.8 and 2.2 μm are
computed, and only the former is computed in the MOE model.
A double waveband system is designed to model the HOE,
and the additional phase departure for 2.0 μm is computed
from the ideal phase of 0.8 μm with their orders as 2 and
5. Figure 3 shows the curves of the actual phase with two
zones at the center part of the lens, and figure 4 shows the
curves of the optical path difference in the radial direction as a
function of the pupil coordinate. From figure 3, the additional
phase departure of the HOE and MOE are much smaller than
that of the DOE. This is because the HOE and MOE can
reduce their phase delay due to their own characteristics. It

4 ZEMAX is a trademark of Zemax Development Corporation, Bellevue,
WA 98004, USA.

is known that the diffractive efficiency can be increased by
the HOE at the resonant wavelength [10] λ = pλ0/m, and
by the MOE for the wide waveband [9], where m is integer.
It can be explained that the HOE and MOE can reduce the
actual wavefront deformation at the nonnominal wavelength,
as shown in figure 4, because of their smaller phase delay
and smaller additional phase difference in comparison with the
DOE.

The MTF curves on axis are given as a function of
frequency in figures 5–7 for the three types of diffractive
elements. For comparison purposes these figures show the
MTF of the system calculated from the different models:
the conventional calculation with only one order (with 100%
efficiency at all wavelengths, as assumed by most commercial
optical design software), the weighted summation model of
orders (five orders taken symmetrically around the prime
order), and our modified model. From these figures the validity
of our method for all three types of diffractive element is
clearly shown in comparison with other models.

In the model of the HOE, two different back focal lengths
of 39.77 and 41.12 mm are selected for two wavebands, and
there exists a � f = 1.35 mm between two bands. This
discrepancy is inevitable for the double waveband hybrid
system although it can be reduced by the optimization of the
optical design software. It can be seen from figure 6 that the
difference between the modified MTF curve and the ideal one
is very small, that is to say, the effect of the modified operation
is very weak. So the chromatic aberration of the system, � f ,
should not be considered as caused by the dispersion of the
HOE. The focal length of the HOE can be written as

f2 = pλ1

mλ2
f1, (24)

where f1 and f2 are the focal length of HOE for the nominal
wavelength of the two wavebands, λ1 and λ2. In this example,
p = 5, λ1 = 0.8 μm, m = 2, λ2 = 2.0 μm, and f1 = f2 can
be achieved, which indicates that the HOE can be confocal at
two nominal wavelengths. Therefore, the actual aberration � f
can only be caused by the material dispersion of the refractive
elements in the hybrid system. In order to verify this point,
the system is rebuilt to be a pure refractive system by deleting
the diffractive surface, and the focal length is kept unchanged

Figure 3. Phase plot versus radius of the DOE. Here only the first two zones of the 17-zone diffractive lens are shown. (b) is the magnified
view of (a).
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Figure 4. Optical path differences as a function of pupil coordinate for a wavelength of 1.8 μm. (a) Original plot, (b) modified plots.

Figure 5. MTF of the hybrid system with DOE for (a) 1.8 μm and (b) 2.2 μm.

Figure 6. MTF of the hybrid system with the HOE for 2.0 μm. (b) is the magnified view of (a).

Figure 7. MTF of the hybrid system with the MOE for 1.8 μm. (b) is the magnified view of (a).
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by introducing an ideal thin lens, which does not cause the
aberration. The back focal length of refractive system for
two wavebands are 40.57 mm and 41.94 mm respectively, and
� f = 1.37 mm. This value is close to that of original system,
and it is concluded that the chromatic aberration of the hybrid
system should be attributed to the material dispersion of the
refractive elements in the system.

5. Conclusion

A modified phase model has been developed in this paper
which is theoretically coherent with the weighted summation
model of orders. The modified model has been verified to be
applicable for three different types of diffractive element. The
advantage of our model over other existing models, such as
the weighted summation model, is that the calculation of the
diffractive efficiency of the diffraction orders is not needed,
making our model simpler and more practical. Furthermore,
our method is more compatible with the common optical
design software due to the operation of our approach being
ultimately based upon the optical design software package,
ZEMAX.
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