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A merit function is proposed and applied to design holographic concave gratings for moderate-resolution
monochromators. To justify the validity of the merit function, imaging properties of gratings used for the
coma-correction Seya-Namioka monochromator, designed by the present authors, Noda, and Takahashi,
are compared through ray tracing and their aberration-correction mechanisms are also analyzed. The
capability of themerit function is well demonstrated in the design of holographic gratings for another two
moderate-resolution monochromators with different requirements. All the results obtained show that
the merit function is not only straight and effective but also manages to balance various aberrations
of the concave holographic grating very well. © 2011 Optical Society of America
OCIS codes: 050.1950, 050.2770, 220.1010.

1. Introduction

For the advantages of holographic gratings, such as
exceedingly low scattered light levels, relatively
short production periods, and absolute absence of no-
torious ghosts, they are widely used in spectrographs
and monochromators nowadays. A common way to
manufacture the holographic gratings is to record,
in a photosensitive resist smearing on the surface of
the grating blank, the interference patterns of two
beams of coherent light [1–4], in which process, by
properly choosing the locations of the two coherent
light sources, the aberrations of these gratings will
be reduced. Although recording gratings by aspheric
wavefront has been put forward [5–7], which enables
sufficient variables for the optimization design of
high-resolution aberration-corrected holographic
gratings, here we introduce the disadvantage that
the recording geometry is difficult to construct be-
cause the positions of the supplementary optical ele-
ments used to produce aspheric wavefront are not

easy to locate accurately. The aberration theory of
aspheric gratings has been developed [8–11], which
introduces additional variables for the optimization,
but it is out of the scope of this paper.

Some types of merit function have been developed
for the design of grating instruments [12], and each
of them has its own advantages and drawbacks. The
rms merit function mentioned in [12] is worth the
whistle for its high degree of accuracy of the sophis-
ticated grating device design and its use of gratings
recorded by aspheric wavefronts [5,13], but the final
formulas for the aberration reduced are extremely
cumbersome and intractable for numerical optimiza-
tion, so this merit function is not appropriate for
applications in which the grating instruments are
not sophisticated.

Although the geometric aberration theory of
double-element optical systems has been put forward
[14,15], the most common use in daily life is still the
single-element optical systems, which necessitate
only moderate resolving power. The geometric aber-
ration theory based on the Fermat’s principle for
single-element optical systems has been well devel-
oped by Noda et al. [1] and widely used for many
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design purposes for its understandability and avail-
ability. However, the disadvantages are that the
aberration coefficients derived from the expansion of
the light path function are minimized separately and
the design process is divided into two steps: one is to
seek instrumental parameters that involve integrals
and derivatives, the other is to seek recording param-
eters and the varieties of the aberration to be re-
duced are limited by the number of the free variables.
Obviously, precision errors of the optimum param-
eters will be brought out when the results of the first
step are substituted into the second step and the
optimum grating recording parameters may not be
obtained under the predetermined optimum grating
use parameters.

The purpose of this paper is to propose a new
merit function that is able to avoid the disadvantage
mentioned earlier and able to balance various
aberrations of the grating by adopting appropriate
weighting factors. To justify this merit function,
we design a concave holographic grating used for
the coma-correction Seya-Namioka monochromator
and compare the result with the gratings designed
by Noda [1] and Takahashi [16]. We also design
holographic concave gratings for another two
constant-deviation monochromators with different
requirements to verify the merit function’s capability
and efficiency. All the gratings are evaluated by the
degree of spread in their spot diagrams and their
aberration coefficient curves.

2. Merit Function

To facilitate the later discussion, we introduce a rec-
tangular coordinate system whose origin O is at the
vertex of the concave grating blank shown in Fig. 1,
with the x axis along the grating normal and the x–y
plane as the symmetry plane of the grating system.
A ray originating from a point A in the entrance slit,
whose center is at point A0, is diffracted by a point
P on the nth groove of the concave grating and

intersects the image plane, which is assumed to be
perpendicular to the principal rayOB0 of wavelength
λ in mth, at a point B. r and r0 are the distances from
the vertex of the grating to the center of the entrance
slit and exit slit, respectively, and α and β, whose
signs are opposite if the points A and B lie on the dif-
ferent side of the x–z plane, are the angles of inci-
dence and diffraction, respectively. θ is the angle of
grating rotation measuring from OC, which is the
bisector of deviation angle 2K, to the x axis, and
has the same sign as the spectral order m. The light
path function of the ray APB is defined as [17]

F ¼ hAPi þ hPBi þ nmλ: ð1Þ
Applying power series expansions to expression (1),
we obtain

F ¼ F000 þ ωF100 þ lF011 þ
1
2
ω2F200 þ

1
2
l2F020

þ 1
2
ω3F300 þ

1
2
ωl2F120 þ ωlF111 þ

1
8
ω4F400

þ 1
4
ω2l2F220 þ…; ð2Þ

where the subscripts ijk of Fijk are the exponents of
wiljzk, and the exact expressions of Fijk are described
in detail in [17].

The merit function is defined as

I ¼
X

η
εðληÞ½μ1F2

200ðληÞ þ μ2F2
020ðληÞ þ μ3F2

300ðληÞ

þ μ4F2
120ðληÞ þ μ5F2

400ðληÞ þ…�; ð3Þ

where λη is one of the wavelengths chosen to be opti-
mized and the weighting factor εðλnÞ can be set equal
to unity in most cases. μt ðt ¼ 1; 2; 3…Þ are weighting
factors for different aberration coefficients and their
values are decided by the reciprocal of magnitude
of their corresponding aberration coefficients, which
can be estimated by experience.

3. Test of Merit Function

A. Coma-Correction Seya-Namioka Monochromator

For the purpose of comparison, it is assumed that the
deviation angle 2K of the monochromator is 69:733°
and the scanning wavelength range is 0–700nm in
the first negative order. The curvature radius of the
grating is 500mm and the effective grating constant
is 1=600mm; the effective area of the grating is
50ðWÞ × 30ðHÞmm2 and the recording wavelength is
457:93nm. Utilizing the merit function defined in
Section 2, we can obtain the optimum grating param-
eters shown in Table 1 (first row), where rC and rD
are the distances from the vertex of the grating to the
two recording light sources with γ and δ as their in-
cidence angles, respectively. The parameters of the
gratings designed by Noda and by Takahashi are also
shown in Table 1 (rows 2 and 3, respectively).Fig. 1. Schematic diagram of monochromator.
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To analyze their capabilities of aberration correc-
tion, we ray traced and constructed spot diagrams,
as shown in Fig. 2 in three cases with gratings de-
signed by Noda (Fig. 2(a)), Takahashi (Fig. 2(b)), and
the present authors (Fig. 2(c)). To do this, the en-
trance slit was assumed to be 6mm in height and
infinitesimal width. The height of the entrance slit
was divided into five sections equally and the point
at the edge of each section was assumed to be self-
luminous, and the grating was divided into 1500
sections, each of which was a 1:0mm × 1:0mmmesh.
The rays traced were those originating from the edge
of each section in the entrance slit and diffracted
at the mesh cross points on the surface of the grating.
From Fig. 2, we can see that the spectral widths of
the grating designed by the present authors are
much better than the other two.

Now, we analyze the aberration-correction me-
chanism of those gratings. To do this, F200 curves as
functions of wavelength for the three gratings are
described by the solid, dashed, and dotted–dashed

curves in Fig. 3, respectively. It is easy to see that
the defocuses of the gratings designed by Noda
and by Takahashi are well balanced along with the
wavelength in question. However, the defocus of the
grating designed by the present authors departs
from the ideal condition F200 ¼ 0 largely in the mid-
dle of the wavelength range. Figure 4 indicates F300
curves as functions of wavelength for these three
gratings by solid, dashed, and dotted–dashed curves,
respectively. It is easy to see that the coma aberra-
tions of the gratings designed by Noda and by Taka-
hashi grow rapidly with the wavelength increasing.

Fig. 3. Amount of defocus term F200 as a function of diffracted
wavelength. The solid, dashed, and dotted–dashed curves describe
the gratings designed by Noda, Takahashi, and the present
authors, respectively.

Table 2. Optimum Results for the Two Constant-Deviation
Monochromators

R ðmmÞ 2K ðdegÞ rC ðmmÞ rD ðmmÞ γ ðdegÞ δ ðdegÞ
1 84.091 47.578 76.356 84.318 −35:363 −18:306
2 63.53 12.000 168.470 253.741 22.586 37.196

Fig. 4. Amount of coma term F300 as a function of diffracted
wavelength. The solid, dashed, and dotted–dashed curves describe
the gratings designed by Noda, Takahashi, and the present
authors, respectively.

Fig. 2. Spot diagrams obtained by tracing rays through gratings,
mounted in coma-correction Seya-Namioka monochromator,
designed by (a) Noda, (b) Takahashi, and the (c) present authors,
respectively.

Table 1. Optimum Grating Parameters

r ðmmÞ r0 ðmmÞ rC ðmmÞ rD ðmmÞ γ ðdegÞ δ ðdegÞ
1 424.088 397.267 549.450 577.834 −63:587 −38:377
2 409.659 410.870 472.903 502.063 −25:603 −44:983
3 409.607 410.959 508.634 595.645 −47:404 −27:477
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However, the coma aberration of the grating de-
signed by the present authors balanced along with
the wavelength very well. From the earlier discus-
sions, we can see that the merit function defined in
this paper has the capability to balance different
aberrations for a grating.

B. Moderate-Resolution Constant-Deviation
Monochromators

To illustrate the capability of the merit function,
we utilize it to design gratings for another two
moderate-resolution constant-deviation monochro-
mators: (1) the entrance path length is 80mm and
the exit path length is 75mm with the deviation an-
gle 2K≧34:7°; the required wavelength range is from
200 to 800nm in the first negative order with the

effective grating constant confined to 1=600mm.
(2) Both the entrance and the exit path length are
64mm with the deviation angle 2K confined to be
12°; the required wavelength range is from 400 to
1000nm in the first positive order and the effective
grating constant is required to be 1=500mm. The
optimum results are listed in Table 2 (row 1) and
Table 2 (row 2), where R is the curvature of radius
of the grating blank. We did ray racing and con-
structed spot diagrams for the two gratings on the
assumption that both of the entrance slit heights are
1mm with infinitesimal widths, and the ruled areas
are 30ðWÞmm × 30ðHÞmm. Spot diagrams for both
gratings are shown in Figs. 5(a) and 5(b). F200 and
F300 curves of the two gratings are shown Figs. 6
and 7 by solid and dashed curves, respectively. We
can see that the defocus and coma of the two gratings

Fig. 6. Amount of defocus term F200 as a function of diffracted
wavelength. The solid and dashed curves describe the gratings
designed for monochromators 1 and 2, respectively.

Fig. 7. Amount of coma term F300 as a function of diffracted
wavelength. The solid and dashed curves describe the gratings
designed for monochromators 1 and 2, respectively.

Fig. 5. Spot diagrams obtained by tracing rays through gratings mounted in (a) constant-deviation monochromators 1 and 2.
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are well corrected for the wavelength range of
interest.

4. Conclusion

We proposed a merit function, consisting of the
squares of aberration coefficients derived from the
expansion of the light path function with weighting
factors, to design holographic concave gratings for
moderate-resolution constant-deviation monochro-
mators. The validity of the merit function is verified
by comparisons between the gratings designed by the
present authors and the former authors, and the cap-
ability of the merit function is illustrated by the
design of gratings for another two constant-deviation
monochromators with different requirements. In the
view of these results, it is certain that the merit
function proposed here is able to afford an effective
method for moderate-resolution holographic grating
design with an exceptional ability to balance differ-
ent aberrations.

The authors acknowledge support from the Chi-
nese Scientific Technologies Department for the Spe-
cial Innovational Program (grant 2008IM040700).
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