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a b s t r a c t

The reduced biquaternion canonical transform (RBCT) is defined in this paper, which is

the generalization of reduced biquaternion Fourier transform (RBFT). The Parseval’s

theorem related to RBCT is investigated. The concepts of reduced biquaternion

canonical convolution (RBCCV) and reduced biquaternion canonical correlation (RBCCR)

are defined, then the convolution and correlation theorem of RBCT are developed in this

paper. All these theorems can also be seen as the generalizations of the corresponding

theorem related to RBFT. Finally, the discrete form and fast algorithm of RBCT are

presented, and the computation complexity is similar to FFT.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Recently, many signal processing tools using the quater-
nions have been proposed, including quaternion Fourier
transform (QFT) [1–4], quaternion wavelet transform
(QWT) [5–7] and fractional quaternion Fourier transform
(FrQFT) [8]. However, due to the noncommutative property
of the quaternion multiplication, some important theorems
cannot be generalized to quaternion signal processing tools.
For example, the Parseval’s theorem does not hold for
FrQFT; the convolution of two quaternion signal f(x,y) and
g(x,y) cannot be calculated by the product of their QFT [3].
In addition, the computation of QFT and FrQFT are some-
what complex. In order to overcome these drawbacks, we
combine the reduced biquaterion algebra and the linear
canonical transform (LCT) and propose the reduced biqua-
terion canonical transform (RBCT).
ll rights reserved.
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Linear canonical transform (LCT) [10–14] is an impor-
tant tool in signal processing. Many transforms such as
Fourier transform, fractional Fourier transform and the
Fresnel transform are special cases of the LCT. During the
last decade, there were many achievements associated
with the LCT [15–21]. However, the LCT deals with real
scalar signal or complex signal (analytical signal [19]),
none of them processes reduced biquaternion signals. As
the generalization of complex signal, reduced biquater-
nion signal, has one real part and three imaginary parts.
Based on reduced biquaternion (RB) algebra system, we
define the reduced biquaternion canonical transform,
which can process reduced biquaternion signals.

In Section 2, we first give a brief introduction about
quaternion and reduced biquaternion. The reduced biqua-
ternion canonical transform is defined, which can process
not only real scalar or complex signal but also reduced
biquaternion signal. The Parseval’s equality of RBCT is
derived in Section 3. Moreover, in Sections 4 and 5, we
generalize the definitions of convolution and correlation,
propose the reduced biquaternion canonical convolution
(RBCCV) and reduced biquaternion canonical correlation
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(RBCCR). The convolution and correlation theorems of RBCT
are derived. The theorems show that the RBCCV or RBCCR
can be calculated in the RBCT domain. Section 6 developed
the discrete form and fast algorithm of RBCT, simulations
are also implemented. Finally, conclusions are made in
Section 7.

2. Preliminaries

2.1. The quaternion signal and reduced biquaternion signal

The quaternion, which is a type of hypercomplex
number, was formally introduced by Hamilton in 1843. It
is a generalization of complex number. We know that a
complex number has two components: the real part and
imaginary part. However, the quaternion has four parts,
i.e., one real part and three imaginary parts. For a quater-
nion q, which can be written in a rectangular form as
follows: q¼qrþqiiþqjjþqkk, where qr ,qi,qj,qk 2 R and i,j,k
are complex operators obeying the following rules:

i2 ¼ j2 ¼ k2 ¼�1, ij¼�ji¼ k, jk¼�kj¼ i, ki¼�ik¼ j

ð1Þ

Correspondingly, the complex signal can be generalized to
quaternion signal, i.e., f(x,y)¼ fr(x,y)þ ifi(x,y)þ jfj(x,y)þkfk(x,y),
where frðx,yÞ,fiðx,yÞ,fjðx,yÞ,fkðx,yÞ 2 R2. Some signal proces-
sing tools can process quaternion signals, including qua-
ternion Fourier transform, quaternion wavelet transform,
fractional quaternion Fourier transform and quaternion
Fourier–Mellin moment [9].

However, the multiplication rule of quaternions is not
commutative. T.A.Ell defined the double-complex algebra,
which is similar to quaternions but with commutative
multiplication [1]. In Ref. [22], reduced biquaternions
(RBs) was proposed, and commutative multiplication
was defined for it.

The description of RBs is q¼qrþqiiþqjjþqkk, where
qr ,qi,qj,qk 2 R, the imaginary operators obey the following
multiplicative rules:

i2 ¼ k2 ¼�1, j2 ¼ 1, ij¼ ji¼ k, jk¼ kj¼ i, ki¼ ik¼�j

ð2Þ

RBs can also be represented as follows: q¼q1þq2j,
where q1¼qrþqii, q2¼qjþqki.

Another representation of RBs is e1�e2 form [23], i.e.,
q¼ q1þq2j� q1þ2e1þq1�2e2, where q1þ2¼q1þq2, q1�2¼

q1�q2, e1 ¼ ð1þ jÞ=2, e2 ¼ ð1�jÞ=2. We will use e1�e2 form
of RB signals to develop the fast algorithm of RBCT in
Section 6.

In Ref. [24], the norm and conjugate of RBs were
defined. The norm of a reduced biquaternion q¼qrþqiiþ

qjjþqkk is

JqJ¼ ½ðq2
r þq2

i þq2
j þq2

k Þ
2
�4ðqrqjþqiqkÞ

2
�

1
4 ð3Þ

the conjugate of q is

q ¼ JqJ2q�1 ¼ JqJ2=q ð4Þ

The two-dimensional reduced biquaternion signal f(x,y)
is defined as follows: f(x,y)¼ fr(x,y)þ ifi(x,y)þ jfj(x,y)þkfk
(x,y). For any two reduced biquaternion signals f(x,y) and
g(x,y), f(x,y)¼ f1(x,y)þ f2(x,y)j, g(x,y)¼g1(x,y)þg2(x,y)j, where
f1(x,y)¼ fr(x,y)þ ifi(x,y), f2(x,y)¼ fj(x,y)þ ifk(x,y), g1(x,y)¼
gr(x,y)þ igi(x,y), g2(x,y)¼gj(x,y)þ igk(x,y). According to the
multiplication rule of reduced biquaternion, we have

f ðx,yÞgðx,yÞ ¼ gðx,yÞf ðx,yÞ ¼ ½f1ðx,yÞg1ðx,yÞþ f2ðx,yÞg2ðx,yÞ�

þ j½f1ðx,yÞg2ðx,yÞþ f2ðx,yÞg1ðx,yÞ� ð5Þ

If f(x,y) and g(x,y) are quaternion signals, Eq. (5) will
not holds, i.e., f ðx,yÞgðx,yÞagðx,yÞf ðx,yÞ.
2.2. Definition of the RBCT
Definition 1. Let f(x,y) be a reduced biquaternion signal
with condition

R1
�1

R1
�1

Jf ðx,yÞJ2 dx dyo1, then the RBCT
of f(x,y) with parameters A1 and A2 is defined as

FA1 ,A2

i,k ðu,vÞ9LA1 ,A2

i,k ½f ðx,yÞ�ðu,vÞ

¼

R1
�1

R1
�1

f ðx,yÞKA1

i ðx,uÞKA2

k ðy,vÞ dx dy, b1b2a0ffiffiffiffiffiffiffiffiffiffi
d1d2

p
f ðd1u,d2vÞeiðc1d1=2Þu2

ekðc2d2=2Þv2
, b1b2 ¼ 0

8<
:

ð6Þ

where

KA1

i ðx,uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s
eiððd1=2b1Þu

2þða1=2b1Þx
2�ð1=b1ÞuxÞ ð7Þ

KA2

k ðy,vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
ekððd2=2b2Þv

2þða2=2b2Þy
2�ð1=b2ÞvyÞ ð8Þ

A1¼(a1,b1,c1,d1), A2¼(a2,b2,c2,d2), as,bs,cs,ds 2 R,s¼ 1,2.
a1d1�b1c1¼1, a2d2�b2c2¼1.

If A1¼A2¼(0,1,�1,0), the RBCT will be reduced to RBFT
[24,25]. If A1 ¼ ðcosa,sina,�sina,cosaÞ, A2 ¼ ðcosb,sinb,
�sinb,cosbÞ, we can define the fractional reduced biqua-
ternion Fourier transform (FrRBFT). In Ref. [8], the frac-
tional quaternion Fourier transform was defined. Because
the definition of FrQFT is based on quaternion algebra, so
the commutative property of multiplication does not
hold. This drawback leads to that the FrQFT does not
satisfy parseval’s principle any longer and the computa-
tion of the FrQFT is more complex. As a special case of
RBCT, the definition of FrRBFT is based on commutative
quaternion algebra. So the FrRBFT can overcome the
drawback mentioned above. If f(x,y) is the real scalar or
complex signal, and set the imaginary operator k¼ i in
Eq. (6), then the RBCT will be reduced to traditional two-
dimensional LCT. So the RBCT can also be seen as the
generalization of LCT [19,26,27].

The inverse transform of the RBCT is also given by a
reduced biquaternion canonical transform with para-
meters: A1

�1
¼(d1,�b1,�c1,a1) and A2

�1
¼(d2,�b2,�c2,a2),

that is

f ðx,yÞ ¼

R1
�1

R1
�1

FA1 ,A2

i,k ðu,vÞK
A�1

1

i ðu,sÞK
A�1

2

k ðv,tÞ du dv, b1b2a0ffiffiffiffiffiffiffiffiffiffi
a1a2
p

f ða1x,a2yÞe�iða1c1=2Þx2
e�kða2c2=2Þy2

, b1b2 ¼ 0

8<
:

ð9Þ
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We give a brief proof of Eq. (9) for the condition b1b2a0:Z 1
�1

Z 1
�1

FA1 ,A2

i,k ðu,vÞK
A�1

1

i ðu,sÞK
A�1

2

k ðv,tÞ du dv

¼

Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

f ðx,yÞKA1

i ðx,uÞKA2

k ðy,vÞ dx dy � K
A�1

1

i ðu,sÞK
A�1

2

k ðv,tÞ du dv

¼

Z 1
�1

Z 1
�1

f ðx,yÞ

Z 1
�1

KA1

i ðx,uÞK
A�1

1

i ðu,sÞ du

Z 1
�1

KA2

k ðv,yÞK
A�1

2

k ðt,vÞ dv dx dy

¼

Z 1
�1

Z 1
�1

f ðx,yÞdðx�sÞdðy�tÞ dx dy¼ f ðx,yÞ ð10Þ

For the condition b1b2¼0 in Eq. (6), the RBCT of a
reduced biquaternion signal is essentially a chip multi-
plication. We only discuss the condition b1b2a0 in
this work.

3. Parseval’s theorem
Theorem 1. For any two reduced biquaternion signals f(x,y)
and g(x,y) with conditions:

R1
�1

R1
�1

Jf ðx,yÞJ2 dx dyo1, andR1
�1

R1
�1

Jgðx,yÞJ2 dx dy o1, then the following equation

holds

Z 1
�1

Z 1
�1

f ðx,yÞgðx,yÞ dx dy¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

i2pb1

s�����
�����

2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

k2pb2

s�����
�����

2

�

Z 1
�1

Z 1
�1

FA1 ,A2

i,k ðu,vÞGA1 ,A2

i,k ðu,vÞ du dv ð11Þ

where FA1 ,A2

i,k ðu,vÞ and GA1 ,A2

i,k ðu,vÞ are the RBCT of f(x,y) and

g(x,y), respectively.

Proof.Z 1
�1

Z 1
�1

f ðx,yÞgðx,yÞ dx dy

¼

Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

FA1 ,A2

i,k ðu,vÞK
A�1

1

i ðu,xÞK
A�1

2

k ðv,yÞ du dv

Z 1
�1

Z 1
�1

GA1 ,A2

i,k ðs,tÞK
A�1

1

i ðs,xÞK
A�1

2

k ðt,yÞ ds dt dx dy

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

i2pb1

s�����
�����

2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

k2pb2

s�����
�����

2 Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

FA1 ,A2

i,k ðu,vÞ

GA1 ,A2

i,k ðs,tÞe�iðd1=2b1Þðu
2�s2Þe�kðd2=2b2Þðv

2�t2ÞZ 1
�1

Z 1
�1

eið1=b1Þðu�sÞxekð1=b2Þðv�tÞy dx dy du dv ds dt

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

i2pb1

s�����
�����

2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

k2pb2

s�����
�����

2 Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

FA1 ,A2

i,k ðu,vÞ

GA1 ,A2

i,k ðs,tÞe�iðd1=2b1Þðu
2�s2Þe�kðd2=2b2Þðv

2�t2Þdðu�sÞdðv�tÞ ds dt du dv

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

i2pb1

s�����
�����

2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

k2pb2

s�����
�����

2

�

Z 1
�1

Z 1
�1

FA1 ,A2

i,k ðu,vÞGA1 ,A2

i,k ðu,vÞ du dv &

Corollary 1. If f(x,y)¼g(x,y) in Theorem1, then we have the

Parseval’s principle for the RBCT:

Z 1
�1

Z 1
�1

Jf ðx,yÞJ2 dx dy¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

i2pb1

s�����
�����

2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

k2pb2

s�����
�����

2

�

Z 1
�1

Z 1
�1

JFA1 ,A2

i;k ðu,vÞJ2 du dv ð12Þ

4. Reduced biquaternion canonical convolution
theorem

In this section, the convolution theorem of RBCT is
derived. First we give the definition of Reduced biquater-
nion canonical convolution (RBCCV):

Definition 2. Let f(x,y) and g(x,y) are two reduced biqua-
ternion signals, the RBCCV of f(x,y) and g(x,y) is defined as
follows:

f ðx,yÞ,gðx,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
e�iða1=2b1Þx

2
e�kða2=2b2Þy

2
�

½eiða1=2b1Þx
2

ekða2=2b2Þy
2

f ðx,yÞ��½gðx,yÞeiða1=2b1Þx
2

ekða2=2b2Þy
2

�

ð13Þ

where ‘‘n’’ is the traditional convolution operator. The
definition of RBCCV can be seen as the generalization of
RB convolution in [25]. If A1¼A2¼(0,1,�1,0), the RBCCV
will be reduced to RB convolution.

We have the following Reduced biquaternion canoni-
cal convolution theorem:

Theorem 2. Assume f(x,y) and g(x,y) are two RB signals.
FA1 ,A2

i,k ðu,vÞ and GA1 ,A2

i,k ðu,vÞ are the RBCT of f(x,y) and g(x,y),
respectively, then

LA1 ,A2

i,k ½f ðx,yÞ,gðx,yÞ�ðu,vÞ ¼ e�iðd1=2b1Þu
2

e�kðd2=2b2Þv
2

FA1 ,A2

i,k ðu,vÞGA1 ,A2

i,k ðu,vÞ

ð14Þ

Proof.

LA1 ,A2

i,k ½f ðx,yÞ,gðx,yÞ�ðu,vÞ

¼

Z 1
�1

Z 1
�1

f ðx,yÞ,gðx,yÞKA1 ,iðx,uÞKA2 ,kðy,vÞ dx dy

¼

Z 1
�1

Z 1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
e�iða1=2b1Þx

2
e�kða2=2b2Þy

2

Z 1
�1

Z 1
�1

eiða1=2b1Þt2

ekða2=2b2ÞZ2

f ðt,ZÞgðx�t,y�ZÞeiða1=2b1Þðx�tÞ2 ekða2=2b2Þðy�ZÞ2 dt dZ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s
eiððd1=2b1Þu

2þða1=2b1Þx
2�ð1=b1ÞuxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
ekððd2=2b2Þv

2þða2=2b2Þy
2�ð1=b2ÞvyÞ dx dy

By making the change of variables, s¼ x�t,t¼ y�Z, we
obtain

LA1 ,A2

i,k ½f ðx,yÞ,gðx,yÞ�ðu,vÞ

¼

Z 1
�1

Z 1
�1

e�iðd1=2b1Þu
2

e�kðd2=2b2Þv
2

Z 1
�1

Z 1
�1

f ðt,ZÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s
eiððd1=2b1Þu

2þða1=2b1Þt2�ð1=b1ÞutÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
ekððd2=2b2Þv

2þða2=2b2ÞZ2�ð1=b2ÞvZÞ dt dZ

gðs,tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s
eiððd1=2b1Þu

2þða1=2b1Þs
2�ð1=b1ÞusÞ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
ekððd2=2b2Þv

2þða2=2b2Þt
2�ð1=b2ÞvtÞ ds dt

¼ e�iðd1=2b1Þu
2

e�kðd2=2b2Þv
2

Z 1
�1

Z 1
�1

f ðt,ZÞKA1 ,iðt,uÞKA2 ,kðZ,vÞ dt dZ

Z 1
�1

Z 1
�1

gðs,tÞKA1 ,iðs,uÞKA2 ,kðt,vÞ ds dt

¼ e�iðd1=2b1Þu
2

e�kðd2=2b2Þv
2

FA1 ,A2

i,k ðu,vÞGA1 ,A2

i,k ðu,vÞ: &

Theorem 3. For any two RB signals f(x,y) and g(x,y), the

following equation holds

f ðx,yÞ,gðx,yÞ

¼ L
A�1

1
,A�1

2

i,k fe�iðd1=2b1Þu
2

e�kðd2=2b2Þv
2

FA1 ,A2

i,k ðu,vÞGA1 ,A2

i,k ðu,vÞgðx,yÞ

ð15Þ

Proof. Eq. (15) can be easily obtained by Eqs. (9) and
(14). &

Corollary 2. If the parameters A1¼A2¼(0,1,�1,0) in

Theorems 2 and 3, then the results will be reduced to the

RB convolution theorem with respect to the RBFT [24,25].

Proof. The results can be proved from the definitions of
the RBFT, RBCT, RB convolution and the RBCCV. &

5. Reduced biquaternion canonical correlation
Definition 3. The cross-RBCCR for two RB signals f(x,y)
and g(x,y) is defined as follows:

f ðx,yÞ � gðx,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
e�iða1=2b1Þx

2

e�kða2=2b2Þy
2

/eiða1=2b1Þx
2

ekða2=2b2Þy
2

f ðx,yÞ,gðx,yÞe�iða1=2b1Þx
2

e�kða2=2b2Þy
2

S

ð16Þ

where / � , �S is 2-D correlation operator, that is,

/f ðx,yÞ,gðx,yÞS¼
Z 1
�1

Z 1
�1

f ðt,ZÞgðt�x,Z�yÞ dt dZ ð17Þ

If f(x,y)¼g(x,y), from (16) we get the auto-RBCCR:

f ðx,yÞ � f ðx,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
e�iða1=2b1Þx

2

e�kða2=2b2Þy
2

/eiða1=2b1Þx
2
ekða2=2b2Þy

2
f ðx,yÞ,f ðx,yÞe�iða1=2b1Þx

2
e�kða2=2b2Þy

2
S

ð18Þ

If the parameter A1¼A2¼(0,1,�1,0), the RBCCR will be
reduced to RB correlation.

Lemma 1. For any two RB signal f(x,y) and g(x,y), the

relationship between cross-RBCCR and RBCCV for f(x,y) and

g(x,y) as follows:

f ðx,yÞ � gðx,yÞ ¼ f ðx,yÞ,gð�x,�yÞ ð19Þ

Proof. The proof of Eq. (19) can be easily obtained from
the definitions of cross-RBCCR and RBCCV. &
Theorem 4. Let f(x,y) and g(x,y) are two RB signals, then the

following equation holds

LA1 ,A2

i,k ½f ðx,yÞ � gðx,yÞ�ðu,vÞ

¼ e�iðd1=2b1Þu
2

e�kðd2=2b2Þv
2

FA1 ,A2

i,k ðu,vÞG
A0

1
,A0

2

i,k ð�u,�vÞ ð20Þ

where A01 ¼ ða1,�b1,�c1,d1Þ, A02 ¼ ða2,�b2,�c2,d2Þ.

Proof. The results can be proved from the Lemma 1 and
Theorem 2. &

Theorem 5. The RBCCR of two RB signals f(x,y) and g(x,y)
can be calculated by the product of their RBCT and modu-

lated by a chip in RBCT domain, that is

f ðx,yÞ � gðx,yÞ

¼ L
A�1

1
,A�1

2

i,k fe�iðd1=2b1Þu
2

e�kðd2=2b2Þv
2

FA1 ,A2

i,k ðu,vÞG
A0

1
,A0

2

i,k ð�u,�vÞg

ð21Þ

Proof. The results can be easily obtained by Eqs. (9)
and (20). &

6. Fast algorithm

In this section, we give the discrete form of RBCT
(DRBCT) and discuss the fast algorithm of DRBCT. The
simulation of using RBCT to transform color images is also
presented.

6.1. The discrete form of RBCT

The discrete algorithm we used here is similar with the
fractional Fourier transform [12]. To derive the DRBCT, we
first sample the RB signal f(x,y) and the output function
FA1 ,A2

i,k ðu,vÞ by the interval Dx,Dy,Du,Dv as

f ðm1,m2Þ ¼ f ðm1 � Dx,m2 � DyÞ, FA1 ,A2

i,k ðn1,n2Þ

¼ FA1 ,A2

i,k ðn1 � Du,n2 �DvÞ ð22Þ

where m1, m2¼�M,�Mþ1,y,M; n1, n2¼�N,�Nþ1,y,N.
From Eq. (6), we can give the DRBCT as follows:

FA1 ,A2

i,k ðn1,n2Þ9LA1 ,A2

i,k ½f ðm1,m2Þ�ðn1,n2Þ

¼

XM
m1 ¼ �M

XM
m2 ¼ �M

f ðm1,m2Þ

KA1

i ðm1,n1ÞK
A2

k ðm2,n2Þ, b1b2a0ffiffiffiffiffiffiffiffiffiffi
d1d2

p
f ðd1n1,d2n2Þe

iðc1d1=2Þðn1DuÞ2 ekðc2d2=2Þðn2DvÞ2 , b1b2 ¼ 0

8>>>>><
>>>>>:

ð23Þ

where

KA1

i ðm1,n1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

i2pb1

s
ei½ðd1=2b1Þðn1DuÞ2þða1=2b1Þðm1DxÞ2�ð1=b1Þm1n1DuDx�

ð24Þ

KA2

k ðm2,n2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2pb2

s
ek½ðd2=2b2Þðn2DvÞ2þða2=2b2Þðm2DyÞ2�ð1=b2Þm2n2DvDy�

ð25Þ

Here, we only discuss the condition b1b2a0. We need
to find the conditions that the RB signal f(m1, m2) could be
reconstructed from the DRBCT FA1 ,A2

i,k ðn1,n2Þ. We rewritten
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Eq. (9) in discrete form

f ðm1,m2Þ ¼
XN

n1 ¼ �N

XN

n2 ¼ �N

FA1 ,A2

i,k ðn1,n2ÞK
A�1

1

i ðn1,m1ÞK
A�1

2

k ðn2,m2Þ

¼
XN

n1 ¼ �N

XN

n2 ¼ �N

XM
s1 ¼ �M

XM
s2 ¼ �M

f ðs1,s2ÞK
A1

i ðs1,n1ÞK
A2

k ðs2,n2Þ

" #

K
A�1

1

i ðn1,m1ÞK
A�1

2

k ðn2,m2Þ

¼
XM

s1 ¼ �M

XM
s2 ¼ �M

f ðs1,s2Þ
XN

n1 ¼ �N

KA1

i ðs1,n1ÞK
A�1

1

i ðn1,m1Þ

" #

XN

n2 ¼ �N

KA2

k ðs2,n2ÞK
A�1

2

k ðn2,m2Þ

" #
ð26Þ

where

XN

n1 ¼ �N

KA1

i ðs1,n1ÞK
A�1

1

i ðn1,m1Þ

¼
XN

n1 ¼ �N

1

2pjb1j
e½ða1=2b1Þððs1DxÞ2�ðm1DxÞ2Þ�ð1=b1Þn1ðs1�m1ÞDxDu�

ð27Þ

XN

n2 ¼ �N

KA2

k ðs2,n2ÞK
A�1

2

k ðn2,m2Þ

¼
XN

n2 ¼ �N

1

2pjb2j
e½ða2=2b2Þððs2DyÞ2�ðm2DyÞ2Þ�ð1=b2Þn2ðs2�m2ÞDyDv�

ð28Þ

If we want the summations for n1 and n2 in Eqs. (27)
and (28), respectively, to be dðs1�m1Þ and dðs2�m2Þ, then

DxDu¼
2pjb1j

2Nþ1
, DyDv¼

2pjb2j

2Nþ1
ð29Þ

Substitute Eq. (29) into Eqs. (27) and (28), we have

XN

n1 ¼ �N

KA1

i ðs1,n1ÞK
A�1

1

i ðn1,l1Þ ¼
2Nþ1

2pjb1j
dðs1�m1Þ ð30Þ

XN

n2 ¼ �N

KA2

k ðs2,n2ÞK
A�1

2

k ðn2,l2Þ ¼
2Nþ1

2pjb2j
dðs2�m2Þ ð31Þ

In order for Eq. (26) to hold, we normalize Eqs. (30)
and (31) by the factor 2pjb1j=ð2Nþ1Þ and 2pjb2j=ð2Nþ1Þ,
respectively.

In the end, we have the discrete forms of KA1

i ðm1,n1Þ

and KA2

k ðm2,n2Þ:

KA1

i ðm1,n1Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nþ1

r
ei½ðd1=2b1Þðn1DuÞ2þða1=2b1Þðm1DxÞ2�ð2psgnðb1Þm1n1=ð2Nþ1ÞÞ�

ð32Þ

KA2

k ðm2,n2Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nþ1

r
ek½ðd2=2b2Þðn2DvÞ2þða2=2b2Þðm2DyÞ2�ð2psgnðb2Þm2n2=ð2Nþ1ÞÞ�

ð33Þ

where sgn(b) equals 1 when bZ0 and �1 when bo0.
6.2. Fast algorithm of DRBCT

In [24], the implementation of RBFT by two complex 2-
D FT, that is, for RB signal f(x,y)¼ f1þ2(x,y)e1þ f1�2(x,y)e2,
we have

RBFT½f ðx,yÞ�ðu,vÞ ¼ F1þ2ðu,vÞe1þF1�2ðu,vÞe2 ð34Þ

where F1þ2(u,v),F1�2(u,v) are the complex 2-D FT of
f1þ2(x,y) and f1�2(x,y), respectively.

The DRBCT of a RB signal f(m1,m2) can be rewritten as
follows:

FA1 ,A2

i,k ðn1,n2Þ ¼
1

2Nþ1
ei½ðd1=2b1Þðn1DuÞ2 �ek½ðd2=2b2Þðn2DvÞ2 �

XM
m1 ¼ �M

XM
m2 ¼ �M

f ðm1,m2Þ

ei½ða1=2b1Þðm1DxÞ2 �ek½ða2=2b2Þðm2DyÞ2 �e�ið2psgnðb1Þm1n1=ð2Nþ1ÞÞ

e�kð2psgnðb2Þm2n2=ð2Nþ1ÞÞ ð35Þ

Let

gðm1,m2Þ ¼ f ðm1,m2Þe
i½ða1=2b1Þðm1DxÞ2 �ek½ða2=2b2Þðm2DyÞ2 � ð36Þ

then

FA1 ,A2

i,k ðn1,n2Þ ¼
1

2Nþ1
ei½ðd1=2b1Þðn1DuÞ2 �ek½ðd2=2b2Þðn2DvÞ2 �

XM
m1 ¼ �M

XM
m2 ¼ �M

gðm1,m2Þ

�e�ið2psgnðb1Þm1n1=ð2Nþ1ÞÞe�kð2psgnðb2Þm2n2=ð2Nþ1ÞÞ

¼
1

2Nþ1
ei½ðd1=2b1Þðn1DuÞ2 �ek½ðd2=2b2Þðn2DvÞ2 �

RBFT½gðm1,m2Þ�ðsgnðb1Þn1,sgnðb2Þn2Þ ð37Þ

We can implement the RBCT by the RBFT, the calcula-
tion steps are as follows:
Step (1):
 Calculate g(m1, m2) from f(m1, m2) using
Eq. (36);
Step (2):
 Decomposition g(m1, m2) into e1�e2 form, i.e.,
g(m1,m2)¼g1þ2(m1, m2)e1þg1�2(m1, m2)e2;
Step (3):
 Calculate 2-D FT of g1þ2(m1, m2) and g1�2(m1,
m2), respectively, get the results: G1þ2(n1, n2),
G1�2(n1,n2);
Step (4):
 Calculate FA1 ,A2

i,k ðn1,n2Þ by following equations:

FA1 ,A2

i,k ðn1,n2Þ ¼
1

2Nþ1
ei½ðd1=2b1Þðn1DuÞ2 �ek½ðd2=2b2Þðn2DvÞ2 �

½G1þ2ðn1,n2Þe1þG1�2ðn1,n2Þe2� ð38Þ
Finally, we can calculate the RBCT through two complex
2D FFT. Therefore, the computational complexity of the
RBCT is similar to FFT.

6.3. Simulations

The simulation of using DRBCT to transform color
images is presented in this subsection. We encode the
three channel components of RGB image on the three
imaginary parts of a pure reduced biquaternion. In other
words, a pixel at image coordinate (m,n) in an RGB image
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Fig. 1. The RBCT of color image. (a) the color images; (b) the module of the RBCT spectrum. (For interpretation of the references to color in this figure
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can be represented as

f ðm,nÞ ¼ fRðm,nÞiþ fGðm,nÞjþ fBðm,nÞk ð39Þ

where fR(m,n),fG(m,n) and fB(m,n) are the red, green and
blue components of the pixel, respectively.

In the experiment, we set the transformation para-
meters as follows: A1 ¼ ð

ffiffiffiffiffiffiffiffiffi
129
p

,128=2p,2p,
ffiffiffiffiffiffiffiffiffi
129
p

Þ, A2 ¼

ð10,128=4p,4p,12:9Þ. In Fig. 1, (a) is the original color
images, 128�128 pixels. The module of RBCT spectrum is
presented in Fig. 1, (b).
7. Conclusion

In this research, we proposed the forward and inverse
transforms of the RBCT, which can be seen as the general-
ization of traditional RBFT. The RBCT can not only process
RB signals but also real scalar or complex signals. So, the
RBCT is also the generalization of traditional LCT. In
addition, the Parseval’s theorem associated with RBCT is
developed. Moreover, the RBCCV and RBCCR are defined,
the convolution and correlation theorem related to RBCT
are discussed. Finally, the Fast algorithm of RBCT is
presented in this paper. Our future work will be focused
on the use of RBCT in color image processing.
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