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The reduced biquaternion canonical transform (RBCT) is defined in this paper, which is
the generalization of reduced biquaternion Fourier transform (RBFT). The Parseval’s
theorem related to RBCT is investigated. The concepts of reduced biquaternion
canonical convolution (RBCCV) and reduced biquaternion canonical correlation (RBCCR)
are defined, then the convolution and correlation theorem of RBCT are developed in this
paper. All these theorems can also be seen as the generalizations of the corresponding
theorem related to RBFT. Finally, the discrete form and fast algorithm of RBCT are
presented, and the computation complexity is similar to FFT.
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1. Introduction

Recently, many signal processing tools using the quater-
nions have been proposed, including quaternion Fourier
transform (QFT) [1-4], quaternion wavelet transform
(QWT) [5-7] and fractional quaternion Fourier transform
(FrQFT) [8]. However, due to the noncommutative property
of the quaternion multiplication, some important theorems
cannot be generalized to quaternion signal processing tools.
For example, the Parseval’s theorem does not hold for
FrQFT; the convolution of two quaternion signal f{x,y) and
g(x,y) cannot be calculated by the product of their QFT [3].
In addition, the computation of QFT and FrQFT are some-
what complex. In order to overcome these drawbacks, we
combine the reduced biquaterion algebra and the linear
canonical transform (LCT) and propose the reduced biqua-
terion canonical transform (RBCT).
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Linear canonical transform (LCT) [10-14] is an impor-
tant tool in signal processing. Many transforms such as
Fourier transform, fractional Fourier transform and the
Fresnel transform are special cases of the LCT. During the
last decade, there were many achievements associated
with the LCT [15-21]. However, the LCT deals with real
scalar signal or complex signal (analytical signal [19]),
none of them processes reduced biquaternion signals. As
the generalization of complex signal, reduced biquater-
nion signal, has one real part and three imaginary parts.
Based on reduced biquaternion (RB) algebra system, we
define the reduced biquaternion canonical transform,
which can process reduced biquaternion signals.

In Section 2, we first give a brief introduction about
quaternion and reduced biquaternion. The reduced biqua-
ternion canonical transform is defined, which can process
not only real scalar or complex signal but also reduced
biquaternion signal. The Parseval's equality of RBCT is
derived in Section 3. Moreover, in Sections 4 and 5, we
generalize the definitions of convolution and correlation,
propose the reduced biquaternion canonical convolution
(RBCCV) and reduced biquaternion canonical correlation
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(RBCCR). The convolution and correlation theorems of RBCT
are derived. The theorems show that the RBCCV or RBCCR
can be calculated in the RBCT domain. Section 6 developed
the discrete form and fast algorithm of RBCT, simulations
are also implemented. Finally, conclusions are made in
Section 7.

2. Preliminaries
2.1. The quaternion signal and reduced biquaternion signal

The quaternion, which is a type of hypercomplex
number, was formally introduced by Hamilton in 1843. It
is a generalization of complex number. We know that a
complex number has two components: the real part and
imaginary part. However, the quaternion has four parts,
i.e., one real part and three imaginary parts. For a quater-
nion g, which can be written in a rectangular form as
follows: q=q,+qii+q;j+qik, where qr,q;,q;,qx € R and i,jk
are complex operators obeying the following rules:
iz :jz = kz = —1, l:j: —_]l: k, ]k: —kj: i, ki = —ik :j

(1)

Correspondingly, the complex signal can be generalized to
quaternion signal, i.e., flxy)=Ff{xy)+ifi(xy)+if(xy)+kfi(xy),
where fi(x,y).fi(x.¥).fix¥).fu(x.y) € R2. Some signal proces-
sing tools can process quaternion signals, including qua-
ternion Fourier transform, quaternion wavelet transform,
fractional quaternion Fourier transform and quaternion
Fourier-Mellin moment [9].

However, the multiplication rule of quaternions is not
commutative. T.A.Ell defined the double-complex algebra,
which is similar to quaternions but with commutative
multiplication [1]. In Ref. [22], reduced biquaternions
(RBs) was proposed, and commutative multiplication
was defined for it.

The description of RBs is q=q-+qii+qj+qik, where
4r.9:,9;,qk € R, the imaginary operators obey the following
multiplicative rules:
2=k=—1, =1, ij=ji=k, jk=kji=1i, ki=ik=—j

2

RBs can also be represented as follows: g=q;+q5j,
where g1 =qr+qil, g2=0;+qil.

Another representation of RBs is e;—e, form [23], i.e.,
q=q1+92j = q1+281+q1-2€2, where g1, 2=01+q2, G1-2=
q1—q2, 1 =(1+))/2, e =(1—j)/2. We will use e; —e, form
of RB signals to develop the fast algorithm of RBCT in
Section 6.

In Ref. [24], the norm and conjugate of RBs were
defined. The norm of a reduced biquaternion q=q,+q;i+
qj-’-qkk is

gl =1(a7 +F + +07)* ~4(qrq; + e’ T 3)
the conjugate of q is
a=Iqi*q" =lql*/q “)

The two-dimensional reduced biquaternion signal f{x,y)
is defined as follows: flxy)=f{xy)+ifi(xy)+ifi(xy)+kfi
(xy). For any two reduced biquaternion signals f{x,y) and

‘2 -1

8xy), fxy)=fxy)+falxy), gxy)=g1(xy)+g(x.y)j, where
[ =L +iixy),  LEy)=fxy)+ifixy), gaxy)=
&(xy)+igxy), gAxy)=g(xy)+igxy). According to the
multiplication rule of reduced biquaternion, we have

FxYgx.y) =gxf (x.y) = [fi(x)g1(X.Y) +£(X.y)g82(x.y)]
+ilfi Y& x.y) +(x.y)g81 (X.Y)] 5)

If flx,y) and g(x,y) are quaternion signals, Eq. (5) will
not holds, i.e., f(x,y)gXx,y) #gXx.Y)f (x.Y).

2.2. Definition of the RBCT

Definition 1. Let f{x,y) be a reduced biquaternion signal
with condition [*°_ [*_If(x,y)I? dx dy < oo, then the RBCT
of flx,y) with parameters A; and A, is defined as

Fiu™ ) L [f (xy))(u,v)

e ff“oof(x,y)KiA‘ (x,u)K?2 y,v)dxdy, bib,#0
- \/Mf(dl u,d, U)ei(f’ dy /2)u? ek(czd2/2)u2 , biby=0
(6)

where

1 2 2
KA (x,u) = 4 /- ei((dh /2bu? +(ar /2by)x* —(1/b1)ux) 7
i (xu) VlZch] (7)
1 2 2
KA V) = ek((da2/2by)v? + (a2 /2b2)y* ~(1/b2)vy) 8
K0V \/ k27h, ®

A1 =(a1,b1,C1,d1 ), A2=(a2,b2,C2,d2), as,bs,Cs,dS € R,S = 1,2
ﬂ1d1 —b]C1=1, ﬂzdz—szz:l.

If Ay=A>=(0,1,—1,0), the RBCT will be reduced to RBFT
[24,25]. If A;=/(cosa,sina,—sina,cosa), Az = (cosp,sinf,
—sinf,cosf), we can define the fractional reduced biqua-
ternion Fourier transform (FrRBFT). In Ref. [8], the frac-
tional quaternion Fourier transform was defined. Because
the definition of FrQFT is based on quaternion algebra, so
the commutative property of multiplication does not
hold. This drawback leads to that the FrQFT does not
satisfy parseval’s principle any longer and the computa-
tion of the FrQFT is more complex. As a special case of
RBCT, the definition of FrRBFT is based on commutative
quaternion algebra. So the FrRBFT can overcome the
drawback mentioned above. If f{x,y) is the real scalar or
complex signal, and set the imaginary operator k=i in
Eq. (6), then the RBCT will be reduced to traditional two-
dimensional LCT. So the RBCT can also be seen as the
generalization of LCT [19,26,27].

The inverse transform of the RBCT is also given by a
reduced biquaternion canonical transform with para-
meters: Af1=(d1,—b1,—c1,a1) and A{1=(d2,—b2,—cz,a2),
that is

fougy = d P Fia k™ sk (v,0) dudv, byby 0
X,y)= ' .

/aq azf(alx'azy)e*I(M c1/2)x e ke, /2)y? ) bl b2 =0

(C)
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We give a brief proof of Eq. (9) for the condition bb, #0:
/oC /oc F{‘,}'Al(u,u)l(?Tl(u,s)K‘,?;‘(u,t) du dv

= /5o /0C /oc /oc KM xwK?2(y,v) dx dy - l<;q;‘(u,s)l(f5‘(v,t) du dv
= /jo /;m‘f(x,y) /i KM (x,u)l(f;‘(u,s) du /;C K& (v,y)l(fi‘(t,v) dv dx dy

-/ R / " fepiee-s50/-1) dx dy = fxy) (10)

For the condition b1b,=0 in Eq. (6), the RBCT of a
reduced biquaternion signal is essentially a chip multi-
plication. We only discuss the condition bib,#0 in
this work.

3. Parseval’s theorem

Theorem 1. For any two reduced biquaternion signals f(x,y)
and g(x,y) with conditions: [*_ [*_If(x.y)I? dx dy < oo, and
I [ Igx )2 dxdy < oo, then the following equation

holds
2 2
N OofX 2(x,y) dx dy = -1 -1
| [ rovgem axay=| ol ol
/oo /oo Ffll'Az(u_y)W du dv (11)

where Ff,‘;l"‘z (u,v) and fo;;’h(u,v) are the RBCT of flx,y) and
g(x,y), respectively.

Proof.

[ : K Zf (x.y)8Xx.y) dx dy

:/ / / / Ff,l'AZ(u,u)KiAf(u.x)K,'ji](u,y)du dv

/ / Gf;('AZ (s,t)](:“i1 (s,x)KQZA (t,y) ds dt dx dy
— 1[4 /- [ F ™ (u,v
' lan1 k27zb2 /—oo /—oo /_0Q ~/—:>c ik ( )
G?,’(‘AZ (s, tyeidi/2b1)? =5 o—k(dz/2b)(v? ~%)
/Oo /oo el (1/b0)u=s)x ok(1/b2)(v=)y dy du dv ds dt

1 2 1 2 fO00 OO OO OO
| Y [— A1,Ay
B ' i271:b1 k2TEb2 ‘ \/—oo /—oo \/—oo \/—oc Fi'k (u'v)

G2 (s, £)e (1 /2D =) gk(da /2020 =) 51y _5)5(v—t) ds dt du dv

2 2
— _] 7_‘1 .
||\ i2wby k2mh

/ / F;t‘,}"“(u,v)G;f},’('AZ (u,v) du dv O

Corollary 1. If fix,y)=g(x,y) in Theorem1, then we have the

Parseval’s principle for the RBCT:
2 - _ —
/,Oo /,oo fexy)I™ dx dy = H \/ 27b, H \/ kanb,

2

[x /jo IF{p™ (u,v)I1? du dv (12)

4. Reduced biquaternion canonical convolution
theorem

In this section, the convolution theorem of RBCT is
derived. First we give the definition of Reduced biquater-
nion canonical convolution (RBCCV):

Definition 2. Let f{x,y) and g(x,y) are two reduced biqua-
ternion signals, the RBCCV of f{x,y) and g(x,y) is defined as
follows:

FOY)@EXY) =\ [y g /2 ke 2.
12TTD1 7Dy

i@ /2b0% ok(@2 /20201 £ (0 )14l (x,y)el(@1/2D1x* gk(az/2b2)y*
(13)

il

where “x” is the traditional convolution operator. The
definition of RBCCV can be seen as the generalization of
RB convolution in [25]. If A;=A>=(0,1,—1,0), the RBCCV
will be reduced to RB convolution.

We have the following Reduced biquaternion canoni-
cal convolution theorem:

Theorem 2. Assume f(x,y) and g(x,y) are two RB signals.
Ff,:’AZ (u,v) and GM*2(u,v) are the RBCT of fix,y) and g(x.y),

ik
respectively, then

LM (,Y) @ gy)(u,v) = e~ /200 ek 2600 R 1, 1) Gy A2 )

(14

Proof.
LIy @ gy, v)
= [ S0 @0y, xa0Ki 3.0 dx dy

_/°o /”‘ 1|1 it /2b)x k(@ /2b)y?
T )one ) \i27by \ k27D,

o poo
/ / @101/2D1)72 k@2 /20202 (1 1y (30— 7,y —17)@l@1 /DD oK@ /20201 i iy
S )

1 i((d1/2b)u? + (a1 /2b1)x®~(1 /by)ux)
i27h,

1 ok((da/2b3)v? +(az /2b2)y* —(1/by)vy)
anbze dx dy

By making the change of variables, s=x—1,t=y-n, we
obtain

LA f (x,y) ® gy, v)

o0 o0 . o0 o0
_ / / il /26,2 p—k(dy /2by)0? / / Fan)
J =00 J —00 J =00 J —00
1 i /2byu? + (@ /2517 ~(1 by )
127Zfb1
1 kdy/2b02 2b)2—(1/b
ek((d2/2by)v* +(az /2b)n* —(1/b2)vm) (47
\ k2mb, "

g(s,t) 1 ei((d1/2b1)U2+(ﬂ1/2b1)52—(1/b1)115)
i2
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T k@260 +(@2 /22 ~(1 /b)) g i
k27'5b2

:e—i(dl/Zb])Uze—k(dz/zbz)vz/ / f@.mKy, i(1, WK, k(n,v) dt dn

/ / 8(5.DKy, (10K, (V) ds

—1(d1/2b,)u2 7k(d2/2bz)v2FA1 Az(u v)G Az(u ). 0O

Theorem 3. For any two RB signals f(x,y) and g(x,y), the
following equation holds

fxy) @g(X.y)
= L (e 20 ki /2ha” A A2 () A (1, 1)) ()
(15)

Proof. Eq. (15) can be easily obtained by Egs. (9) and
(14). O

Corollary 2. If the parameters A;=A,=(0,1,—1,0) in
Theorems 2 and 3, then the results will be reduced to the
RB convolution theorem with respect to the RBFT [24,25].

Proof. The results can be proved from the definitions of
the RBFT, RBCT, RB convolution and the RBCCV. O

5. Reduced biquaternion canonical correlation

Definition 3. The cross-RBCCR for two RB signals f(x,y)
and g(x,y) is defined as follows:

—1(a1/2b1)x2 —k(ay /2by)y?
fey) @ gxy) = \l lZTEb] \/ k27'5b2

(el /201 ok(@2 /2020 £ (x ) o(x,y)e~(@1/2b0X o—k(@z/2b2)y
(16)

where ¢ -, - > is 2-D correlation operator, that is,

Sengeny= [ [ remgaxn-yidrdn - a7)
If fix,y)=g(x,y), from (16) we get the auto-RBCCR:

—z(a /2b1)x? —k(az/sz)y
fxy) @ fxy) = \/mb ”anbz Ve

i@ /201 ok(az /20202 £ (x ) £(x,y)e~(@1/2b0)¥ o=kiaz/2b2)y?
(18)

If the parameter A;=A,=(0,1,—1,0), the RBCCR will be
reduced to RB correlation.

Lemma 1. For any two RB signal fixy) and g(xy), the
relationship between cross-RBCCR and RBCCV for fx,y) and
g(x,y) as follows:

fxy) @ gxy)=fxy) ®g(—x,—y) (19)

Proof. The proof of Eq. (19) can be easily obtained from
the definitions of cross-RBCCR and RBCCV. O

Theorem 4. Let f(x,y) and g(x,y) are two RB signals, then the
following equation holds

L2 (f(xy) © g y)Iu.)
= e /2b0i ke 2020 Flue (1) G (—u,—v) (20)
where A| = (a1,—b1,—¢1,d1), A, = (az,—by,—C32,d3).

Proof. The results can be proved from the Lemma 1 and
Theorem 2. O

Theorem 5. The RBCCR of two RB signals fix,y) and g(x.y)
can be calculated by the product of their RBCT and modu-
lated by a chip in RBCT domain, that is
fxy) ®gx.y)
— L?’?'Ail {e*l‘(dl /2by)u? e—k(d2/2b; w? F]{t‘]z#“z (u,U)G:}{'A,Z(—u,—U)}
(21)

Proof. The results can be easily obtained by Egs. (9)
and (20). O

6. Fast algorithm

In this section, we give the discrete form of RBCT
(DRBCT) and discuss the fast algorithm of DRBCT. The
simulation of using RBCT to transform color images is also
presented.

6.1. The discrete form of RBCT

The discrete algorithm we used here is similar with the
fractional Fourier transform [12]. To derive the DRBCT, we
first sample the RB signal f(x,y) and the output function
F{i(u,v) by the interval Ax,Ay,Au,Av as

f(m1'm2) :f(m1 : Axvmz : AJ’)- F?’l'Az(n]an)
=F{y™(n1 - Au,ny - Av) (22)

where m;, my=-M,—M+1,...,M; n;, n=—N,—N+1,...,N
From Eq. (6), we can give the DRBCT as follows:

F{u (ny,ng) 2 L™ [f (my,m2)l(ny,nz)

M
Z Z f (mq,my)
=-Mm; =
K4 ’(m1,n1) K22 (my,ny), biby #0
/d; dlf(d1n1,d2n2)ei<fl dy /2)(ny Au)? ek(czdz/Z)(nzAv)z' biby =0
(23)
where
KA (mq,ny) = 1 ei[(dl/Zbl)(nlAll)z+(a1/2b1)(mlAX)Z—U/bl)mlnlAHAX]
! ! 127'5b1
(24)
[ 1 ki(da/2by)(ny Av)? + (a3 /2b2)(my Ay)2 —(1 /by)myny AvAy]
K?Z(mZInz): eXl(d2/2b3)(n; 2/2D2)(my 2)Ma 1y
k2mb,
(25)

Here, we only discuss the condition bb, #0. We need
to find the conditions that the RB signal f{m, m,) could be
reconstructed from the DRBCT Ff,;'AZ (nq,ny). We rewritten
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Eq. (9) in discrete form

N N . .
fmm)= 3" 3 Frtmun)k (nmpK? (n,my)

ny=-Nny=-N
M

NN
= > > { > Z f(s1,5K (511K (52, nz)}
N

n =-Nn; =-N =-Ms; =

K (my,mpKZ (ng,my)

Z Z f(51‘52){ Z KA](SLM)KA‘ (n1,m1)}

S =-Ms, =-M

N —1
{ 3 KPs2mK,? (nz,mz)] (26)
ny =-N
where
N . At
> KM(snpKt (ng,my)

ny =-N

Z T i@ /260051 A%~y A2 —~(1 /by 5 —my AxAu]
2

0= n27lb 1|

27)
N A A=l
D KE(s2,m0)K? (2,my)
n, =—-N
N
> el(@2/2b2)((s2 8y ~(m2 Ay*)—(1/b2)na (52 ~m3) AyAv]
2n|by|

(28)

If we want the summations for n; and n, in Eqgs. (27)
and (28), respectively, to be §(s;—m;) and d(s,—m5), then

_ 2m|by| _ 2m|by|
AxAu= 55T = IN+1 29)
Substitute Eq. (29) into Eqgs. (27) and (28), we have
N = 2N+1
> KLk () =5 Sy O (30)
ny =-N 7t|b1]
N
= 2N+
> KK () = ST 6s-ms) 31
ny =—-N ]

In order for Eq. (26) to hold, we normalize Eqgs. (30)
and (31) by the factor 2x|b1|/(2N+1) and 27|b,|/(2N+1),
respectively.

In the end, we have the discrete forms of KA1 (mq,nq)
and KAZ (my,ny):

K (my,n1)
L il /2bym Au? + (@1 /2by ) my A2 ~@risgniby iy /2N+ 1)
2N+1
(32)
K2 (my,np)

1 oKi(da/2b;)(0 AVY? + (@ /22)(ma Ay)? ~27sgn(by)maz /2N + 1)
2N+1

(33)

where sgn(b) equals 1 when b >0 and —1 when b <0.

6.2. Fast algorithm of DRBCT

In [24], the implementation of RBFT by two complex 2-
D FT, that is, for RB signal flx,y)=f12(x.y)e1+f1_2(x.y)ea,
we have

RBFTIf(x.y)I(w,v) = F1 2 (u,v)er +Fi_a(u,v)e; 34

where F;o(u,v),F;_>(u,v) are the complex 2-D FT of
fi42(xy) and fi _»(x,y), respectively.

The DRBCT of a RB signal f(im,m5) can be rewritten as
follows:

M M
i{(d /2b1)(1 Auy] oki(d2 /2b2) (12 Av)?) Z Z f(my,my)

1
FA"AZ(H ny) = e
(N
! 2N+1 my=-Mmy; =-M

eil(@1/2b1)(m1 AX)?] oKi(a2 /2b)(m> Ay)?] o —i(2sgn(bu)ms i /2N +1))

e—k@msgn(by)msny /2N +1) (35)
Let
g(my,my) = f(my,my)el@ /2b1)(m1 AX)?] ok((@2 /2b2)(m2 Ay)] (36)
then
F;"\IL,AZ (M) = = eild1/2b1)(n1 Aw)®] ok[(d2 /2b2)(n2 AvY)

2N+1

M M
Z Z g(my,my)

my =-Mmy; =-M
x e—i(Znsgn(bl )yming /2N + 1))e—k(2nsgn(b2 ymyny /(2N +1))

b i /25 Aup ) hids /2b;)my A0
2N+1

RBFT[g(im1,my)](sgn(bq)ny,sgn(b2)nz) (37

We can implement the RBCT by the RBFT, the calcula-
tion steps are as follows:

Step (1): Calculate g(m;, my) from flm;, my) using
Eq. (36);

Step (2): Decomposition g(m;, my) into e; —e, form, i.e.,
g(my,my)=g1 1 2(my, myle;+gr _2(mi, mye;

Step (3): Calculate 2-D FT of gy, (my, my) and g; _»(mjy,
ms), respectively, get the results: Gq2(nq, n2),
Gi_2(n1,n3);

Step (4): Calculate F{}*(ny,ny) by following equations:

FAir il(c1 /2b1)(n Auy?] okl(dz /2b2)(m2 AVY]

1
ik " (ny,np) = INF1¢

[G142(n1,mp)eq 4+ G_a(ny,nz)es] (38)

Finally, we can calculate the RBCT through two complex
2D FFT. Therefore, the computational complexity of the
RBCT is similar to FFT.

6.3. Simulations

The simulation of using DRBCT to transform color
images is presented in this subsection. We encode the
three channel components of RGB image on the three
imaginary parts of a pure reduced biquaternion. In other
words, a pixel at image coordinate (m,n) in an RGB image
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b

400

Module of the RBCT

150

Fig. 1. The RBCT of color image. (a) the color images; (b) the module of the RBCT spectrum. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

can be represented as
f(m,n) = fr(m,nyi+fo(m,n)j+fp(m,mk (39

where fr(m,n)fc(m,n) and fzg(m,n) are the red, green and
blue components of the pixel, respectively.

In the experiment, we set the transformation para-
meters as follows: A; =(+/129,128/2m,27,v/129), A; =
(10,128/4n,4m,12.9). In Fig. 1, (a) is the original color
images, 128 x 128 pixels. The module of RBCT spectrum is
presented in Fig. 1, (b).

7. Conclusion

In this research, we proposed the forward and inverse
transforms of the RBCT, which can be seen as the general-
ization of traditional RBFT. The RBCT can not only process
RB signals but also real scalar or complex signals. So, the
RBCT is also the generalization of traditional LCT. In
addition, the Parseval’s theorem associated with RBCT is
developed. Moreover, the RBCCV and RBCCR are defined,
the convolution and correlation theorem related to RBCT
are discussed. Finally, the Fast algorithm of RBCT is
presented in this paper. Our future work will be focused
on the use of RBCT in color image processing.
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