Tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants

Xiudong Wei ${ }^{\mathrm{a}, *}$, Zhenwu Lu ${ }^{\text {a }}$, Weixing $\mathrm{Yu}^{\text {a }}$, Hongxin Zhang ${ }^{\text {a }}$, Zhifeng Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Changchun Institute of Optics, Fine Mechanics and Physics of Chinese Academy of Sciences, Changchun 130033, China
${ }^{\mathrm{b}}$ The Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China

A R T I C L E I N F O

Article history:

Received 13 November 2009
Accepted 28 February 2011
Available online 1 April 2011

Keywords:

Target-aligned heliostat
Solar tower power plants
Asymmetric surface
Ray tracing

Abstract

The tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants have been derived in this paper. Based on the equations, a new module for analysis of the target-aligned heliostat with an asymmetric surface has been developed and incorporated in the code HFLD. To validate the tracking and ray tracing equations, a target-aligned heliostat with a toroidal surface is designed and modeled. The image of the target-aligned heliostat is calculated by the modified code HFLD and compared with that calculated by the commercial software Zemax. It is shown that the calculated results coincide with each other very well. Therefore, the correctness of the tracking and ray tracing equations for the target-aligned heliostat is proved.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For solar tower power plants, the heliostats track the sun and reflect the solar radiation onto the receiver atop a tower. The heliostat field plays a pivotal role in contribution of the total cost and efficiency of solar tower power plants [1]. Traditionally, heliostats utilize spherical reflector with azimuth-elevation mount. During the sun tracking, the incident angle relative to the heliostat changes and the reflection is off-axis, which is most of the time in practical situations. For the spherical reflector, the meridian focus moves along a circle with a diameter equal to the paraxial focal length. However, the sagittal focus moves along a straight line with the increase of incident angle. The sagittal and meridian focuses never overlap so that the image spreads in the focal plane. In order to correct the astigmatism and reduce the solar image size, an asymmetric reflector was suggested to be used which means that the heliostat should have different curvature radii along the meridian and sagittal direction in heliostat plane [2,3]. However, the asymmetric reflector requires that the incident direction of sunlight remains stationary relative to the heliostat plane and the incident plane of sunlight coincides with the meridian plane of the heliostat during the sun tracking. RIES H presented a new tracking method called target-aligned mount which can be used for the asymmetrical heliostat [4].

[^0]In this work, the tracking and ray tracing equations for the target-aligned heliostat are firstly derived and given explicitly. Then based on the equations, a new module for analysis of the target-aligned heliostat with asymmetric surface is incorporated in the code HFLD [5-7]. The image of a single target-aligned heliostat with toroidal surface is calculated by using the modified code HFLD and the software Zemax respectively. Zemax is well known commercial software which is widely used for the optical design and analysis $[8,9]$. The correctness of the tracking and ray tracing equations is proved by comparing the calculated results.

2. Tracking equations for the target-aligned heliostat

The target-aligned heliostat has two rotation axes as shown in Fig. 1. The first axis is fixed relative to the ground and points toward the target and the second axis is perpendicular to the first axis and is located in the heliostat plane. As the sun moves, the heliostat rotates about the first axis firstly so that the incident plane of sunlight coincides with the meridian plane of the heliostat, and then the heliostat rotates about the second axis to reflect the sunlight to the target. The rotation angles of heliostat can be calculated according to the solar time, the heliostat and the target locations on earth.

For deriving the rotation angle formulas for the target-aligned heliostat, Cartesian right-handed coordinate systems are established and illustrated in Fig. 2. Ground-coordinates are defined as X_{g}, Y_{g}, Z_{g}, where the tower base center G is the origin, X_{g} is directed toward south, Y_{g} points toward north, and Z_{g} points toward the

Fig. 1. The heliostat with target-aligned mount.
zenith. Reflection-normal coordinates are defined as X_{r}, Y_{r}, Z_{r}, where the heliostat plane center M is origin, Z_{r} is along reflection toward the target, X_{r} is horizontal and perpendicular to Z_{r}, and Y_{r} is perpendicular to X_{r} toward up. T denotes the target center which corresponds to the intersection point between the Z_{g} axis and the Z_{r} axis. Zero position for the target-aligned heliostat is selected as the meridian plane of the heliostat is vertical. $Y_{r} Z_{r}$ plane corresponds to the heliostat meridian plane in zero position. Auxiliary coordinates $X_{1} Y_{1} Z_{1}$ correspond to the real position of the heliostat after rotations about the first axis.

The incidence vector pointing toward the sun from the heliostat location in ground-coordinates is illustrated in Fig. 3.
$\left[\begin{array}{l}\cos \alpha_{i} \\ \cos \beta_{i} \\ \cos \gamma_{i}\end{array}\right]=\left[\begin{array}{l}\cos A \cos \alpha \\ \sin A \cos \alpha \\ \sin \alpha\end{array}\right]$
where $\cos \alpha_{i}, \cos \beta_{i}, \cos \gamma_{i}$ are the direction cosine components of the incidence vector, α is the solar altitude angle and A is the solar azimuth angle which is measured clockwise on the horizontal plane from the projection of the sun's central ray to the south-

Fig. 2. Coordinate systems for deriving the rotation angle formulas for the targetaligned heliostat.

Fig. 3. Incidence vector in ground-coordinates.
pointing coordinate axis. The angles α and A can be calculated according to the solar time and the heliostat location on earth [10].

Similarly, the reflection vector pointing toward the target from the heliostat center in ground-coordinates is illustrated in Fig. 4.
$\left[\begin{array}{l}\cos \alpha_{r} \\ \cos \beta_{r} \\ \cos \gamma_{r}\end{array}\right]=\left[\begin{array}{l}-\cos \theta_{H} \sin \lambda \\ -\sin \theta_{H} \sin \lambda \\ \cos \lambda\end{array}\right]$
where $\cos \alpha_{r}, \cos \beta_{r}, \cos \gamma_{r}$ are the direction cosine components of the reflection vector, λ is the heliostat's target angle and θ_{H} is the heliostat's facing angle which is measured anticlockwise on the horizontal plane from the south-pointing coordinate axis to the heliostat's position. The angles λ and θ_{H} depend on the heliostat and the target locations on earth.

The incident angle θ equals to the half of the angle between the incidence and reflection vectors. According to the law of vector angular cosine and using Eqs. (1) and (2), we have,
$\cos 2 \theta=\sin \alpha \cos \lambda-\cos \alpha \sin \lambda \cos \left(\theta_{H}-A\right)$
The incident angle θ can be solved from Eq. (3) as follows,
$\theta=\cos ^{-1}\left\{\frac{\sqrt{2}}{2}\left[\sin \alpha \cos \lambda-\cos \left(\theta_{H}-A\right) \cos \alpha \sin \lambda+1\right]^{1 / 2}\right\}$
For obtaining the direction cosine of the incidence vector in auxiliary coordinates $X_{1} Y_{1} Z_{1}$, the coordinates need to transform from ground-coordinates to auxiliary coordinates. Firstly, groundcoordinates rotate $\theta_{H}-\pi / 2$ about Z_{g} axis and then rotate λ about X_{g} axis so that the three axial directions of the coordinates coincide with that of reflection-normal coordinates (see Fig. 2). Then, the coordinates rotate $-\omega_{H}$ about Z_{r} axis so that the three axial directions of the coordinates coincide with that of the auxiliary coordinates. The transformation matrices are given as follows,

Fig. 4. Reflection vector in ground-coordinates.
$M_{1}=\left[\begin{array}{ccc}\sin \theta_{H} & -\cos \theta_{H} & 0 \\ \cos \theta_{H} & \sin \theta_{H} & 0 \\ 0 & 0 & 1\end{array}\right], \quad M_{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \lambda & \sin \lambda \\ 0 & -\sin \lambda & \cos \lambda\end{array}\right]$,
$M_{3}=\left[\begin{array}{ccc}\cos \omega_{H} & -\sin \omega_{H} & 0 \\ \sin \omega_{H} & \cos \omega_{H} & 0 \\ 0 & 0 & 1\end{array}\right]$
where ω_{H} is the rotation angle about the first axis (see Fig. 2). The direction cosine of the incidence vector also can be written as (0 , $\sin 2 \theta, \cos 2 \theta)$. Therefore, we have,
$\left[\begin{array}{l}0 \\ \sin 2 \theta \\ \cos 2 \theta\end{array}\right]=M_{3} M_{2} M_{1} \cdot\left[\begin{array}{l}\cos A \cos \alpha \\ \sin A \cos \alpha \\ \sin \alpha\end{array}\right]$
From Eq. (5), we have,
$\cos \omega_{H} \cos \alpha \sin \left(\theta_{H}-A\right)-\sin \omega_{H}\left[\cos \lambda \cos \alpha \cos \left(\theta_{H}-A\right)\right.$
$+\sin \lambda \sin \alpha]=0$
Solving Eq. (6), we have,
$\omega_{H}=\tan ^{-1}\left[\frac{\cos \alpha \sin \left(\theta_{H}-A\right)}{\cos \lambda \cos \alpha \cos \left(\theta_{H}-A\right)+\sin \lambda \sin \alpha}\right]$
The tilt angle E_{H} of the heliostat equals to the incident angle θ, we have,
$E_{H}=\theta$

3. Ray tracing equations for the target-aligned heliostat

For modeling and analyzing the target-aligned heliostat with an asymmetric surface, it is necessary to derive the ray tracing equations. Cartesian right-handed coordinate systems are established
to X_{m} toward up, X_{m} and Y_{m} are located in the heliostat plane. Target-coordinates are defined as $X_{\mathrm{T}}, Y_{\mathrm{T}}, Z_{\mathrm{T}}$, where the receiver aperture center T is origin, Z_{T} is along the normal direction of the receiver aperture toward up, X_{T} is horizontal and perpendicular to $Z_{\mathrm{T}}, Y_{\mathrm{T}}$ is perpendicular to X_{T} toward up, X_{T} and Y_{T} are located in the receiver aperture plane.

Considering the sun shape, the incident beam relative to a point of mirror can be regarded as a cone with a vertex angle of $\varepsilon=9.3 \mathrm{mrad}$. The symmetric axis of the cone coincides with the Z_{i} axial direction. The polar coordinate system is established on the solar disc plane. The center of the solar disc is the origin. $\rho_{\text {sun }}, \theta_{\text {sun }}$ are the polar coordinate components ($0 \leq \rho_{\text {sun }} \leq \varepsilon / 2,0 \leq \theta_{\text {sun }} \leq 2 \pi$). In terms of incident-normal coordinates $X_{\mathrm{i}} Y_{\mathrm{i}} Z_{\mathrm{i}}$, the components $\delta_{i x}, \delta_{i y}$, $\delta_{i z}$ of the unit vector of incident ray can be expressed as follows,
$\left[\begin{array}{l}\delta_{i x} \\ \delta_{i y} \\ \delta_{i z}\end{array}\right]=\left[\begin{array}{l}\rho_{\text {sun }} \cos \theta_{\text {sun }} \\ \rho_{\text {sun }} \sin \theta_{\text {sun }} \\ \left(1-\delta_{i x}^{2}-\delta_{i y}^{2}\right)^{0.5}\end{array}\right]$
For obtaining the direction cosine components $\cos \alpha_{l}, \cos \beta_{I}$, $\cos \gamma_{I}$ of the incident ray in heliostat-coordinates $X_{m} Y_{m} Z_{m}$, the coordinates need to transform from incident-normal coordinates to heliostat-coordinates. Firstly, incident-normal coordinates rotate $\alpha-\pi / 2$ about X_{i} axis and then rotate $A-\pi / 2$ about Z_{i} axis so that the three axial directions of the coordinates coincide with that of ground-coordinates (see Fig. 2 and Fig. 5). Secondly, the coordinates rotate $\theta_{H}-\pi / 2$ about Z_{g} axis and then rotate λ about X_{g} axis so that the three axial directions of the coordinates coincide with that of reflection-normal coordinates. Finally, the coordinates rotate $-\omega_{H}$ about Z_{r} axis and then rotate $-\theta$ about X_{r} axis so that the axial directions of the coordinates coincide with that of heliostat-coordinates. The transformation matrices are given as follows,
$M_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \sin \alpha & -\cos \alpha \\ 0 & \cos \alpha & \sin \alpha\end{array}\right], \quad M_{2}=\left[\begin{array}{ccc}-\sin A & -\cos A & 0 \\ \cos A & -\sin A & 0 \\ 0 & 0 & 1\end{array}\right], \quad M_{3}=\left[\begin{array}{ccc}\sin \theta_{H} & -\cos \theta_{H} & 0 \\ \cos \theta_{H} & \sin \theta_{H} & 0 \\ 0 & 0 & 1\end{array}\right]$,
$M_{4}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \lambda & \sin \lambda \\ 0 & -\sin \lambda & \cos \lambda\end{array}\right], \quad M_{5}=\left[\begin{array}{ccc}\cos \omega_{H} & -\sin \omega_{H} & 0 \\ \sin \omega_{H} & \cos \omega_{H} & 0 \\ 0 & 0 & 1\end{array}\right], \quad M_{6}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$.
and shown in Fig. 5. Incident-normal coordinates are defined as X_{i}, Y_{i}, Z_{i}, where the heliostat plane center M is origin, Z_{i} is along the incident direction toward the sun, X_{i} is horizontal and perpendicular to Z_{i}, and Y_{i} is perpendicular to X_{i} toward up. Heliostat-coordinates are defined as X_{m}, Y_{m}, Z_{m}, where the heliostat plane center M is origin, Z_{m} is along the normal direction of the heliostat toward up, X_{m} is along the second axis of the heliostat, Y_{m} is perpendicular

So we have,

$$
\left[\begin{array}{l}
\cos \alpha_{I} \tag{10}\\
\cos \beta_{I} \\
\cos \gamma_{I}
\end{array}\right]=\Pi_{i=0(i \leq 5)}^{6-i}\left[M_{i}\right] \cdot\left[\begin{array}{l}
\delta_{i x} \\
\delta_{i y} \\
\delta_{i z}
\end{array}\right]=\left[\begin{array}{l}
\delta_{i x} A_{11}+\delta_{i y} A_{12}+\delta_{i z} A_{13} \\
\delta_{i x} A_{21}+\delta_{i y} A_{22}+\delta_{i z} A_{23} \\
\delta_{i x} A_{31}+\delta_{i y} A_{32}+\delta_{i z} A_{33}
\end{array}\right]
$$

where,
$A_{11}=-\cos \omega_{H} \cos \left(\theta_{H}-A\right)-\sin \omega_{H} \cos \lambda \sin \left(\theta_{H}-A\right)$
$A_{12}=\left[\sin \omega_{H} \cos \lambda \cos \left(\theta_{H}-A\right)-\cos \omega_{H} \sin \left(\theta_{H}-A\right)\right] \sin \alpha-\sin \omega_{H} \sin \lambda \cos \alpha$
$A_{13}=\left[\cos \omega_{H} \sin \left(\theta_{H}-A\right)-\sin \omega_{H} \cos \lambda \cos \left(\theta_{H}-A\right)\right] \cos \alpha-\sin \omega_{H} \sin \lambda \sin \alpha$
$A_{21}=\left(\cos \theta \cos \omega_{H} \cos \lambda+\sin \theta \sin \lambda\right) \sin \left(\theta_{H}-A\right)-\cos \theta \sin \omega_{H} \cos \left(\theta_{H}-A\right)$
$A_{22}=\left(\cos \theta \cos \omega_{H} \sin \lambda-\sin \theta \cos \lambda\right) \cos \alpha-\left[\cos \theta \sin \omega_{H} \sin \left(\theta_{H}-A\right)+\left(\cos \theta \cos \omega_{H} \cos \lambda+\sin \theta \sin \lambda\right) \cos \left(\theta_{H}-A\right)\right] \sin \alpha$
$A_{23}=\left[\cos \theta \sin \omega_{H} \sin \left(\theta_{H}-A\right)+\left(\cos \theta \cos \omega_{H} \cos \lambda+\sin \theta \sin \lambda\right) \cos \left(\theta_{H}-A\right)\right] \cos \alpha+\left(\cos \theta \cos \omega_{H} \sin \lambda-\sin \theta \cos \lambda\right) \sin \alpha$
$A_{31}=\left(\sin \theta \cos \omega_{H} \cos \lambda-\cos \theta \sin \lambda\right) \sin \left(\theta_{H}-A\right)-\sin \theta \sin \omega_{H} \cos \left(\theta_{H}-A\right)$
$A_{32}=\left(\sin \theta \cos \omega_{H} \sin \lambda+\cos \theta \cos \lambda\right) \cos \alpha-\left[\sin \theta \sin \omega_{H} \sin \left(\theta_{H}-A\right)+\left(\sin \theta \cos \omega_{H} \cos \lambda-\cos \theta \sin \lambda\right) \cos \left(\theta_{H}-A\right)\right] \sin \alpha$
$A_{33}=\left[\sin \theta \sin \omega_{H} \sin \left(\theta_{H}-A\right)+\left(\sin \theta \cos \omega_{H} \cos \lambda-\cos \theta \sin \lambda\right) \cos \left(\theta_{H}-A\right)\right] \cos \alpha+\left(\sin \theta \cos \omega_{H} \sin \lambda+\cos \theta \cos \lambda\right) \sin \alpha$

Fig. 5. Coordinate systems for deriving the ray tracing equations for the target-aligned heliostat.

The coordinates of a point of mirror are denoted by X_{m}, Y_{m}, Z_{m}. In terms of heliostat-coordinates, the components $\delta_{n x}, \delta_{n y}, \delta_{n z}$ of the unit normal vector of a point on the mirror surface can be expressed as follows,
$\left[\begin{array}{l}\delta_{n x} \\ \delta_{n y} \\ \delta_{n z}\end{array}\right]=\left[\begin{array}{l}-\delta_{X_{m}}+\delta_{n w x} \\ -\delta_{Y_{m}}+\delta_{n w y} \\ \left(1-\delta_{n x}^{2}-\delta_{n y}^{2}\right)^{0.5}\end{array}\right]$
where, $\delta_{X_{m}}$ and $\delta_{Y_{m}}$ are angular components along X_{m} and Y_{m} axes respectively due to the mirror surface shape, $\delta_{n w x}$ and $\delta_{n w y}$ are angular components along X_{m} and Y_{m} axes respectively due to the shape errors. The direction cosine components $\cos \alpha_{N}, \cos \beta_{N}, \cos \gamma_{N}$ of the normal vector of a point can be written as follows,
$\left[\begin{array}{l}\cos \alpha_{N} \\ \cos \beta_{N} \\ \cos \gamma_{N}\end{array}\right]=\left[\begin{array}{l}\delta_{n x} \\ \delta_{n y} \\ \left(1-\delta_{n x}^{2}-\delta_{n y}^{2}\right)^{0.5}\end{array}\right]$
According to the law of vector angular cosine, the incident angle θ_{m} of all traced rays relative to the mirror surface can be written as follows,
$\cos \theta_{m}=\cos \alpha_{I} \cos \alpha_{N}+\cos \beta_{I} \cos \beta_{N}+\cos \gamma_{I} \cos \gamma_{N}$
According to the Snell law, the direction cosine components $\cos \alpha_{m r}, \cos \beta_{m r}, \cos \gamma_{m r}$ of reflection rays in terms of heliostat-coordinates are written as follows,
$\left[\begin{array}{l}\cos \alpha_{m r} \\ \cos \beta_{m r} \\ \cos \gamma_{m r}\end{array}\right]=\left[\begin{array}{l}2 \cos \theta_{m} \cos \alpha_{N}-\cos \alpha_{I} \\ 2 \cos \theta_{m} \cos \beta_{N}-\cos \beta_{I} \\ 2 \cos \theta_{m} \cos \lambda_{N}-\cos \gamma_{I}\end{array}\right]$
For obtaining the direction cosine components $\cos \alpha_{r}, \cos \beta_{r}, \cos \gamma_{r}$ of the reflection ray and the coordinate components $X_{m r}, Y_{m r}, Z_{m r}$ of a point of mirror in reflection-normal coordinates $X_{r} Y_{r} Z_{r}$, the coordinates need to transform from heliostat-coordinates to reflection-normal coordinates. Therefore, heliostat-coordinates rotate θ about X_{m} axis and then rotate ω_{H} about Z_{m} axis so that the axial directions of the coordinates coincide with that of reflectionnormal coordinates (see Fig. 6). The transformation matrices are given as follows,
$M_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right], \quad M_{2}=\left[\begin{array}{ccc}\cos \omega_{H} & \sin \omega_{H} & 0 \\ -\sin \omega_{H} & \cos \omega_{H} & 0 \\ 0 & 0 & 1\end{array}\right]$

Fig. 6. Coordinate transformation from heliostat coordinates to reflection-normal coordinates.

So we have,

$$
\begin{align*}
& {\left[\begin{array}{l}
\cos \alpha_{r} \\
\cos \beta_{r} \\
\cos \gamma_{r}
\end{array}\right]=M_{2} M_{1}\left[\begin{array}{l}
\cos \alpha_{m r} \\
\cos \beta_{m r} \\
\cos \gamma_{m r}
\end{array}\right]} \tag{15}\\
& =\left[\begin{array}{l}
\cos \alpha_{m r} \cos \omega_{H}+\cos \beta_{m r} \sin \omega_{H} \cos \theta+\cos \gamma_{m r} \sin \omega_{H} \sin \theta \\
-\cos \alpha_{m r} \sin \omega_{H}+\cos \beta_{m r} \cos \omega_{H} \cos \theta+\cos \gamma_{m r} \cos \omega_{H} \sin \theta \\
-\cos \beta_{m r} \sin \theta+\cos \gamma_{m r} \cos \theta
\end{array}\right]
\end{align*}
$$

$$
\begin{align*}
{\left[\begin{array}{l}
X_{m r} \\
Y_{m r} \\
Z_{m r}
\end{array}\right]=} & M_{2} M_{1}\left[\begin{array}{c}
X_{m} \\
Y_{m} \\
Z_{m}
\end{array}\right] \\
= & {\left[\begin{array}{l}
X_{m} \cos \omega_{H}+Y_{m} \sin \omega_{H} \cos \theta+Z_{m} \sin \omega_{H} \sin \theta \\
-X_{m} \sin \omega_{H}+Y_{m} \cos \omega_{H} \cos \theta+Z_{m} \cos \omega_{H} \sin \theta \\
-Y_{m} \sin \theta+Z_{m} \cos \theta
\end{array}\right] } \tag{16}
\end{align*}
$$

The equation of the reflection ray is written as follows,
$\frac{x_{r}-X_{m r}}{\cos \alpha_{r}}=\frac{y_{r}-Y_{m r}}{\cos \beta_{r}}=\frac{z_{r}-Z_{m r}}{\cos \gamma_{r}}$
The coordinates of intersection point between the reflection ray and the plane $Z_{r}=S_{0}$ (see Fig. 6) are solved as follows,

$$
\left[\begin{array}{l}
X_{r} \tag{18}\\
Y_{r} \\
Z_{r}
\end{array}\right]=\left[\begin{array}{l}
\left(S_{0}-Z_{m r}\right) \cdot \cos \alpha_{r} / \cos \gamma_{r}+X_{m r} \\
\left(S_{0}-Z_{m r}\right) \cdot \cos \beta_{r} / \cos \gamma_{r}+Y_{m r} \\
S_{0}
\end{array}\right]
$$

where S_{0} is the distance between the heliostat center and the receiver aperture center (see Fig. 6).

A new reflection auxiliary coordinates $X_{r 1} Y_{r 1} Z_{r 1}$ are obtained by translating the reflection-normal coordinate S_{0} along Z_{r} axis (see Fig. 7). In terms of the new coordinates, the coordinates of intersection point between the reflection ray and the plane $Z_{r}=S_{0}$ can be written as $X_{r}, Y_{r}, 0$.

For obtaining the direction cosine components $\cos \alpha_{t r}, \cos \beta_{t r}$, $\cos \gamma_{t r}$ of the reflection ray and the coordinate components $X_{t 0}, Y_{t 0}$, $Z_{t 0}$ of the intersection point in target-coordinates $X_{T} Y_{\mathrm{T}} Z_{\mathrm{T}}$, the coordinates need to transform from reflection auxiliary coordinates to target-coordinates. Firstly, the coordinates rotate $-\lambda$ about $X_{r 1}$ axis and then rotate $\pi / 2-\theta_{H}$ about $Z_{r 1}$ axis so that the axial directions of the coordinates coincide with that of ground-coordinates (see Fig. 7). Then, the coordinates rotate δ_{R} about Y_{g} axial direction and then rotate $\pi / 2$ about Z_{g} axial direction so that the axial directions of the coordinates coincide with that of the targetcoordinates. The transformation matrices are given as follows,

Fig. 7. Coordinate transformation from reflection auxiliary coordinates to targetcoordinates.
$M_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \lambda & -\sin \lambda \\ 0 & \sin \lambda & \cos \lambda\end{array}\right], \quad M_{2}=\left[\begin{array}{ccc}\sin \theta_{H} & \cos \theta_{H} & 0 \\ -\cos \theta_{H} & \sin \theta_{H} & 0 \\ 0 & 0 & 1\end{array}\right]$,
$M_{3}=\left[\begin{array}{ccc}\cos \delta_{R} & 0 & -\sin \delta_{R} \\ 0 & 1 & 0 \\ \sin \delta_{R} & 0 & \cos \delta_{R}\end{array}\right], \quad M_{4}=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
So we have,
$\left[\begin{array}{l}X_{t 0} \\ Y_{t 0} \\ Z_{t 0}\end{array}\right]=\left[\begin{array}{l}-X_{r} \cos \theta_{H}+Y_{r} \sin \theta_{H} \cos \lambda \\ -X_{r} \sin \theta_{H} \cos \delta_{R}-Y_{r}\left(\cos \theta_{H} \cos \delta_{R} \cos \lambda-\sin \delta_{R} \sin \lambda\right) \\ X_{r} \sin \theta_{H} \sin \delta_{R}+Y_{r}\left(\cos \theta_{H} \sin \delta_{R} \cos \lambda+\cos \delta_{R} \sin \lambda\right)\end{array}\right]$

Fig. 8. Optical model of the target-aligned mirror with the toroidal surface in Zemax software.
aligned heliostat with a toroidal surface [11] is designed. The parameters of the target-aligned heliostat are given in Table 1.

According to the locations of the heliostat and the target on the earth, the range of incident angle θ relative to the heliostat center in a year can be calculated. Assuming the working hours of the heliostat are from solar time 8:00 a.m. through 4:00 p.m. every day, the range of incident angle θ is $0^{\circ} \sim 35^{\circ}$. The toroidal surface equation in the form $z=f(x, y)$ is given as follows,

$$
\begin{align*}
& \cos \alpha_{t r}=-\cos \alpha_{r} \cos \theta_{H}+\cos \beta_{r} \sin \theta_{H} \cos \lambda-\cos \gamma_{r} \sin \theta_{H} \sin \lambda \\
& \cos \beta_{t r}=-\cos \alpha_{r} \sin \theta_{H} \cos \delta_{R}-\cos \beta_{r}\left(\cos \theta_{H} \cos \delta_{R} \cos \lambda-\sin \delta_{R} \sin \lambda\right)+\cos \gamma_{r}\left(\cos \theta_{H} \cos \delta_{R} \sin \lambda+\sin \delta_{R} \cos \lambda\right) \tag{20}\\
& \cos \gamma_{t r}=\cos \alpha_{r} \sin \theta_{H} \sin \delta_{R}+\cos \beta_{r}\left(\cos \theta_{H} \sin \delta_{R} \cos \lambda+\cos \delta_{R} \sin \lambda\right)-\cos \gamma_{r}\left(\cos \theta_{H} \sin \delta_{R} \sin \lambda-\cos \delta_{R} \cos \lambda\right)
\end{align*}
$$

where δ_{R} is the tilt angle of the receiver aperture (see Fig. 5).
The coordinates of intersection point between the reflection ray and the receiver aperture plane $z_{T}=0$ are derived as follows,
$\left[\begin{array}{l}x_{T} \\ y_{T} \\ z_{T}\end{array}\right]=\left[\begin{array}{l}-Z_{t 0} \cos \alpha_{t r} / \cos \gamma_{t r}+X_{t 0} \\ -Z_{t 0} \cos \beta_{t r} / \cos \gamma_{t r}+Y_{t 0} \\ 0\end{array}\right]$
According to the equation (21), the coordinates of intersection points between all traced rays and the receiver aperture can be calculated.

4. Validation of the tracking and ray tracing equations

Based on the tracking and ray tracing equations, a new module for the analysis of the target-aligned heliostats with an asymmetric surface is developed and incorporated in the code HFLD. A target-

Table 1
Parameters of the single heliostat.

Latitude	40.4°
Heliostat size	$5 \mathrm{~m} \times 5 \mathrm{~m}$
Height of the pedestal	2.5 m
Location $\left(\mathrm{x}_{\mathrm{g}, \mathrm{yg}}\right)$	$(-31.058 \mathrm{~m}, 0)$
Facing angle	180°
Tracking method	Target-aligned tracking
Target distance	36.94 m
Tilt angle of target plane	30°

$z=R_{S}-\sqrt{\left[R_{s}-\frac{1-\sqrt{1-(1+K) C^{2} y^{2}}}{(1+K) C}\right]^{2}-x^{2}}$
where $C=1 / R_{t}, R_{s}$ and R_{t} are curvature radii along the meridian and sagittal direction, K is the cone factor.

The size and tilt angles of a mirror and the surface shape parameters including R_{s}, R_{t} and K can be input into Zemax so that the optical model of the target-aligned mirror with a toroidal surface can be easily created (see Fig. 8).

The field of view along the Y direction of the mirror equals to the incident angle θ and the field of view along the X direction equals to 0 . The distance between the mirror center and the image plane equals to the product of the target distance and the cosine of the incident angle. As the incident angle changes, the corresponding tilt angles of the toroidal mirror about X, Y and Z axes are inputted in order to reflect light into a defined direction. An optimal toroidal surface for the target-aligned heliostat is designed by using Zemax. The parameters of the toroidal surface are given in Table 2.

Table 2
Parameters of the toroidal surface.

Range of incident angle	$0^{\circ} \sim 35^{\circ}$
Target distance	36.94 m
Curvature radius along meridian direction $\left(R_{t}\right)$	81.40 m
Cone factor (K)	-19.32
Curvature radius along sagittal direction $\left(R_{s}\right)$	68.00 m

 left image is calculated by the HFLD and right image is calculated by Zemax.

According to the parameters of the heliostat as listed in Table 1 and Table 2, the target-aligned heliostat with the toroidal surface is modeled and the image of the heliostat is calculated by using the code HFLD and the software Zemax respectively. The solar shape is not considered in the calculation. The comparisons of the results are shown in Fig. 9. It can be seen that the results coincide with each other very well. Therefore, the correctness of the tracking and ray tracing equations for the target-aligned heliostat is proved.

5. Conclusions

In this work, the tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants are derived and given explicitly. With the equations, a new module for the analysis of the target-aligned heliostat with asymmetric surface is incorporated in the code HFLD. To validate the correctness of the tracking and ray tracing equations, a target-aligned heliostat with a toroidal surface is designed and modeled. The image of the target-
aligned heliostat is calculated by the code HFLD and the software Zemax respectively. The calculated results coincide with each other and thus the correctness of the equations is proved.

Acknowledgments

The authors acknowledge the financial support from the National High Technology Research and Development Program of China (Grant \# 2006AA05010101) and the National Basic Research Program of China (Grant \#.2010CB227101).

References

[1] Kolb GJ, Jones SA, Donnelly MW, Gorman D, Thomas R, Davenport R, et al. Heliostat cost reduction study, SAND 2007-3293, http://www.prod.sandia.gov/ cgi-bin/techlib/access-control.pl/2007/073293.pdf; 2007.
[2] Igel EA, Hughes RL. Optical analysis of solar facility heliostats. Solar Energy 1979;22(3):283-95.
[3] Zaibel R, Dagan E, Karni J, Ries H. An astigmatic corrected target-aligned heliostat for high concentration. Solar Energy Material and Solar Cells 1995;37(2): 191-202.
[4] Ries H, Shubnell M. The optics of a two-stage solar furnace. Solar Energy Materials 1990;21(2-3):213-7.
[5] Wei XD, Lu ZW, Lin Z, Zhang HX, Ni ZG. Optimization procedure for design of heliostat field layout of a 1MW solar tower thermal power plant. In: Proceeding of SPIE, vol. 6841; 2007. pp. 1-10.
[6] Yao ZH, Wang ZF, Lu ZW, Wei XD. Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China. Renewable Energy 2009;34(11):2437-46.
[7] Wei XD, Lu ZW, Yu WX, Wang ZF. A new code for design and analysis of the heliostat field layout for tower power system. Solar Energy 2010;84: 685-90.
[8] ZEMAX: Software for optical system design. http://www.zemax.com.
[9] Vives Sebastien, Prieto Eric, Madec Fabrice. A set of Zemax user-defined surfaces to model slicer mirrors. In: Proceeding of SPIE, vol. 6273; 2006. pp. 1-7.
[10] Stine WB, Geyer M. Power from the sun, http://www.powerfromthesun.net/ book.htm; 2001.
[11] Guo Minghuan, Wang Zhifeng, Lu Zhenwu. The optical designing method and the concentrating performance analysis for a toroidal heliostat with spinningelevation sun tracking. In: Proceedings of solar world congress, vol. IV; 2007. pp. 1878-82.

[^0]: * Corresponding author. Tel.: +86 43186176292.

 E-mail address: wei.xiudong@yahoo.com.cn (X. Wei).

