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Controlling spatiotemporal chaos via phase space compression
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We present a simple and effective method for controlling spatiotemporal chaos~STC! via phase space
compression, by compressing the evolution orbit of the chaotic attractor. In numerical simulations, we obtain
global and local control in coupled map lattice~CML! systems by the same phase space compression in
different situations, and find that the functional relationship of control results to control parameters in a certain
region is the same as the local dynamics expression of the CML. According to the control equation, using
different phase space compressions we successfully control a CML exhibiting STC into various desired stable
states.
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I. INTRODUCTION

Controlling spatiotemporal chaos~STC! has been given
much attention by scientists and technologists in recent y
@1–19# because developments in controlling STC offer o
portunities for potentially practical applications. Genera
speaking, there are two kinds of method for controlling ST
feedback control and nonfeedback control, and each one
both advantages and disadvantages. STC systems are
monly described by coupled map lattice~CML! models,
which are relatively simple. However, only a few metho
have been proposed for controlling such systems@1–9#.
Feedback pinning@1–8# and constant pinning@9# have been
used to control or suppress chaos modeled by CMLs.

In this paper, we will give an example of controlling ST
in CMLs by phase space compression, which compresse
phase space orbit of the chaotic attractor. Similar meth
are used to control temporal chaos@20,21#; to our knowl-
edge, the method has not been used to control STC. Bec
nonfeedback control does not need any prior knowledge
the system or explicit changes of system parameters,
easy to implement, and may be particularly convenient
experimentalists. When the system is under control, the c
trolling input does not vanish and the controlled target st
may or may not be an unstable periodic orbit of the chao
attractor. In numerical simulations, we first analyze the c
trol results in the logistic map by using this method. Then
obtain global and local control in CMLs exhibiting STC b
the same phase space compression in different situations
find the functional relationship between control results a
control parameters in a certain region. According to the c
trol equation, using different phase space compressions
successfully control a CML exhibiting STC into various d
sired stable states.

II. CONTROL METHOD AND SIMULATION RESULTS

The model we used in this paper is a one-dimensio
CML model, originally introduced by Kaneko@22#:

xn11~ i !5~12«! f @xn~ i !#1
«

2
$ f @xn~ i 21!#1 f @xn~ i 11!#%,

~1!
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where n51,2, . . . ,N are the discrete time steps,i
51,2, . . . ,L are the lattice sites,« is the coupling strength to
the nearest neighbor sites, periodic boundary conditi
xn( i 1L)5xn( i ) are imposed, andf (x) governs the local
dynamics. We choosef (x)5ax(12x). With L51, model
~1! reduces to the well-known logistic map; the dynamics
this map might be either periodic or chaotic, depending
the nonlinear parametera. 3.569 945 6 . . .,a<4 is the
chaotic region;x* 5121/a is an unstable steady state in th
chaotic region.

Now, we consider the logistic map with phase space co
pression and takea54,

xn5H xn , xmin,xn,xmax

xmax, xn>xmax

xmin , xn<xmin ,

~2!

xn1154xn~12xn!,

wherexmax, xminP @0,1#. Phase space compression is used
limit xn only before iteration so our method is different fro
the methods in@20,21#. We use it to control chaos in th
logistic map and give the control parameter ranges that l
to orbits of any desired period. To illustrate this, we consid
only xmin50. We graphically analyze the iterative results
Eq. ~2! with xmax50.9 in Fig. 1~a! and xmax50.75 in Fig.
1~b!. The period-2 orbit and the unstable steady statex* are
obtained, respectively, and period-1 orbits will always
found whenxmax<0.75. We now analyze the control metho
from another angle assumingxn1154xmax(12xmax) to be
used instead of the logistic map in the interval@xmax,1#. Then
the curve of the logistic map in this region changes into
dashed horizontal line shown in Fig. 1~a! and Fig. 1~b!. Since
the slope of the line is 0, orbits in this region are guarante
to change from unstable to stable and each orbit is equiva
to the one atxmax. In Fig. 1~c! we iterate the logistic map
with a54 for all times, exceptn5700 ton51300. During
this control time, we iterate Eq.~2! with xmax50.967 and
obtain a stable period-3 orbit. A bifurcation diagram th
gives the values of successive iterates as a function ofxmax in
Eq. ~2! is shown in Fig. 1~d!. So, by choosing the paramete
xmax andxmin appropriately in Eq.~2!, one can stabilize any
©2001 The American Physical Society12-1
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FIG. 1. ~a! Plot of the iterate
of Eq. ~2! with xmax50.9, xmin50.
The period-2 orbit is obtained.~b!
Plot of the iterate of Eq.~2! with
xmax50.75, xmin50. x* is ob-
tained. ~c! Chaos control using
phase space compression. Ea
point gives a value ofxn11. The
logistic map with a54 is used
except during control fromn
5700 ton51300. During control,
Eq. ~2! is used for the iteration
with xmax50.967, xmin50. ~d! A
bifurcation diagram for Eq.~2!
with xmin50. For each value of
xmax, 200 points are plotted fol-
lowing a transient of 100 itera-
tions.
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desired periodic orbit in the logistic map. In particular, t
control result of period-1 obeys Eq.~6! below when 0
<xmax<0.75.

Next, we select the motion of CML~1! that is fully de-
veloped turbulence at«50.8,a54 @1,2,5#, andL564. After
transient iterations, the evolution orbits of the system rep
sent a chaotic attractor in phase space; this chaotic attra
is limited in a bounded phase spaceV and its values are
distributed in the interval@0,1#. To start to control STC in
system~1! at the (n11)th iterative, we select a subspaceW,
W,V, W.” F, and compress the orbits of the lattic
xn( i ),i 51,2, . . . ,L, into W. Thus,xn( i ) is changed to

xn~ i !5H xn~ i !, xn~ i !min,xn~ i !,xn~ i !max

xn~ i !max, xn~ i !>xn~ i !max

xn~ i !min , xn~ i !<xn~ i !min

~3!

i 51,2, . . . ,L,

wherexn( i )maxPW, xn( i )minPW are the boundaries of sub
spaceW. For global control with the same phase space co
pression

xn~ i !max5xmax,

xn~ i !min5xmin , ~4!

i 51,2, . . . ,L, xmax,xminPW.

For local control
04621
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xn~ i !max5H xmax, i 5 i s

1, iÞ i s ,
~5!

xn~ i !min5H xmin , i 5 i s

0, iÞ i s ,

i 51,2, . . . ,L, xmax,xminPW,

wherei s is the selected control site. Ifi 5 i s , xn( i )PW, the
phase space orbit of thei th lattice is compressed intoW; if
iÞ i s , xn( i )PV, the phase space orbit of the lattice rema
unchanged.

A. Global control of STC with
the same phase space compression

1. Homogeneous lattice

We show the effects of the same phase space compres
on the CML~1! for a homogeneous lattice~samea and same
« at all sites!. The results presented in Figs. 2~a!–2~c! show
the space-time evolution of the CML~1! before and after
control with«50.8,a54, L564, and the initial condition of
pseudorandom numbers uniformly distributed in the inter
@0,1#. Every eighth time step is plotted after 10 000 iteratio
of transients; thus the time isn/821250 from 0 to 600. At
time 200, phase space compression begins and phase spV
changes into subspaceW. From now on, we will always use
such conditions unless specified otherwise. One can see
the motion of the system is fully turbulent from time 0 to 20
and the turbulent motion of STC can be successfully s
pressed after the phase space compression is input. In
2~a!, we fix the lower boundary ofV unchanged atxmin50
2-2
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FIG. 2. Space-time diagram for CML~1! with «50.8,a54, L564, and time5n/821250. Phase space compression starts at time
After control, ~a! homogeneous steady statex* is obtained withxmax50.75 andxmin50; ~b! stable state of space period 8 is obtained w
xmax50.95 andxmin50.13; ~c! inhomogeneous stable state is obtained withxmax51 andxmin50.29.
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and letxmax5x*50.75; the turbulence of system~1! is con-
trolled to the homogeneous steady statex* very quickly
when time is greater than 200. In Fig. 2~b!, with xmax
50.95 andxmin50.13, system~1! finally has a stable state o
space-period-8, and the transient process under control is
hibited. In Fig. 2~c! an inhomogeneous stable state und
control is shown withxmax51 ~the upper boundary ofV un-
changed! and xmin50.29. Certainly, by selecting differen
compression parametersxmax andxmin to control STC in the
homogeneous CML ~1!, one can also obtain othe
homogeneous/inhomogeneous stable states or much
complex patterns. In numerical simulations, we find that
chaotic attractor of CML~1! is sensitive to some contro
parameters. For instance, in Fig. 2~b! and Fig. 2~c!, one will
obtain different stable patterns if control is started at diff
ent times or other conditions are used. However, whe
<xmax<0.75 andxmin50, STC in CML ~1! is controlled to
the uniform stable statexn11( i )5xc , i 52, . . . ,L21, and
the control resultxc holds independent of the lattice size
other conditions. The curve of control resultxc versusxmax is
the same as in Fig. 5 but in 0<xmax<0.75, their functional
relationship may be written

xc5axmax~12xmax! for xmin50. ~6!
04621
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Obviously, in a certain region Eq.~6! has the same form a
the local dynamics, and its control resultxc is a function of
only the system parametera and the control parametersxmax
andxmin ; it has nothing to do with the coupling strength«.
Equation ~6! will be very useful for controlling STC in
CMLs because the desired target statexc can be obtained by
appropriately choosingxmax from it, and its values include
any numbers in the interval@0,1#. In this region sitesi
51,L are also controlled to stable states but different fromxc
except forxc5x* . Only for xmax50.75 orxmax50.25 are all
the sites of the lattice controlled to the homogeneous ste
statex* .

It is already well known that some nonlinear systems c
exhibit chaotic motion for some parameter values a
periodic/pseudoperiodic motion for other parameter value
space and time. The control method in this paper can tra
form the system from a turbulent state of STC into a perio
state in space and time when the system orbit is limited
the compressed phase space~and the system parameters a
not changed!. This is because the control works before t
next evolution process and phase space compression com
the chaotic attractor to take only the values decided by
control when the orbit exceeds the subspace bounda
These definite values decide the subsequent process ac
2-3
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ing to the dynamical function, suppress the possible evo
tion orbits in the original phase space, and form the n
orbit distributions in the system. In substance, phase sp
compression limits free contraction and expansion of
chaotic attractor in phase space, thus changing the syst
dynamical character. Hence, by appropriately selecting
ferent phase space compression parameters, one can c
STC to different periodic or other states. In a word, the f
mation of the chaotic attractor of a nonlinear system ne
both appropriate parameter values and a large enough p
space; changing either of these two conditions will vary
system dynamics.

2. Heterogeneous lattice

We change the coupling strength« and nonlinear param
eter a at the different lattice sites. Let«50.81(21)i

30.02, a53.91(21)i30.1, i 51,2, . . .,64; the other con-
ditions are the same as in Fig. 2. Figure 3 shows the STC
heterogeneous CML~1! from time 0 to 200 and suppressio
of STC after control with all lattice sites chosen for the sa
phase space compression. The result in Fig. 3~a! is different

FIG. 3. Space-time-amplitude plot before and after control
heterogeneous CML~1! with a53.960.1, «50.860.02. Other
conditions are the same as in Fig. 2.~a! STC is controlled to a stable
state of space period 2 withxmax50.75 andxmin50. ~b! STC is
controlled to an inhomogeneous stable state withxmax50.92 and
xmin50.13.
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from that in Fig. 2~a! with xmax50.75 andxmin50. We find
the heterogeneous system after control achieves a stable
of space period 2 that has two close values. As 0,xmax<1
21/3.8 andxmin50, space-period-2 continues to exist a
each control result as a function ofxmax obeys Eq.~6!. In
contrast to the homogeneous lattice, all sites of a hetero
neous lattice exhibit identical dynamics and obey the sa
control rule in the control parameter space although the
rameters vary. Figure 3~b! shows that the turbulence is con
trolled to an inhomogeneous stable state.

B. Local control of STC

We use Eqs.~3! and ~5! now, select the sitesi s
531, . . . ,38 in CML~1! exhibiting STC, and leave the res
undisturbed; spatially localized control is achieved af
phase space compression is input. Figure 4 shows tha

FIG. 4. Space-time-amplitude plot for local control. Sitesi s

531, . . . ,38 in the CML areselected for control withxmax50.75
and xmin50; other conditions are the same as in Fig. 2. Sitesi p

533, . . . ,36 arepinned and controlled to the uniform steady sta
x* .

FIG. 5. Controlled resultxc versusxmax for local control with
xmin50. Sites i s531, . . . ,38 in the CML areselected. The data
points represent the numerical results for the sites that can be
trolled to the uniform stable statexc in a spatially localized region.
2-4
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FIG. 6. Stable patterns ob
tained by different phase spac
compressions. Differentxmax is
selected in different control re
gions according to Eq.~6!. Con-
trol begins at n510 100; every
time step is plotted; other condi
tions are the same as in Fig. 2.
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present method can be effectively used for controlling S
in spatially localized regions of a fully turbulent CML. Th
stabilized region,i p533, . . .,36, is smaller than the selecte
region. A different stable state in the locally controlled r
gion can be obtained by choosing different phase space c
pression (xmax andxmin). Figure 5 shows the relationship o
the control resultxc to xmax when xmin50; it may be de-
scribed by Eq.~6! at 0<xmax<0.9.

C. Global control of STC with different
phase space compressions

We use different phase space compressions@select differ-
ent xn( i )max5xmax and xn( i )min5xmin in different lattice re-
gions# to control STC in CML~1! according to Eq.~6!. The
control results are shown in Fig. 6. In Fig. 6, phase sp
compression starts atn510 100 and every time step is plo
ted. xmax takes different values in different lattice region
whenxmin50; other conditions are the same as in Fig. 2. W
obtain various desired stable patterns in the CML exhibit
STC. Certainly, by choosing differentxmax according to Eq.
~6! in different lattice regions, one can obtain other intere
ing patterns.

Finally, in numerical simulations we find that the states
the edges of the control regions are different from those
the control regions. We call this phenomenon the edge ef
of controlling STC in CMLs by phase space compression
ci.
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III. CONCLUSIONS

We have shown that the method presented is effective
globally and locally controlling STC in CMLs via phas
space compression. The fully developed turbulence in ho
geneous or heterogeneous CML’s is successfully contro
to homogeneous or inhomogeneous stable states by appr
ately selecting the same global phase space compres
Spatially localized control of STC without disturbing the re
of the lattice can be effectively achieved by choosing app
priate local phase space compression. We find Eq.~6! whose
form is the same as the local dynamics expression of a C
and the control results include any values in the phase sp
of the chaotic attractor. Using this control rule, we obta
various desired stable patterns by different phase space c
pressions@5#. Numerical simulations also show that Eq.~6!
still holds for controlling STC in other CML models wher
the local function is the logistic map~for example, one-way
coupled map lattice systems!. The method avoids comple
mathematical calculations in numerical simulations and m
require only a multichannel threshold detector or a mu
channel amplitude limiter in experiments. Controlling STC
a very difficult and significant task in real systems such
hydrodynamic systems, laser systems, chemical reacti
biological systems, and so on. We are sure the simple
effective method in this paper will have very important a
plications in practice.
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