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Abstract

A concise analytical method is given to describe the spectral diffusion in the system with several sudden jump
modulators from the frequency domain viewpoint. Spectral diffusion of chromophores in low temperature glasses is
investigated by this method with the standard two-level system model. Under the standard approximation, the spectral
diffusion has exactly the same form as the stimulated photon echo result. The time-dependent heterogeneous line width

increases as the logarithm of waiting time. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Homogeneous spectral line width of guest
chromophores is usually well described two phe-
nomenological constants longitude relaxation time
T, and transversal relaxation time 75 ((1/73) =
(1/7;) + (1/27y)), while 1/2nT; corresponds to
the natural line width and T, is called the pure
dephasing time. It does not change with measure-
ment time. But, if the guest chromophores un-
dergo stochastic frequency modulations induced
by the host environment, it will cause a additional
spectral broadening. Random frequency modula-
tions exist in many systems, such as magnetic
system [1] and glasses at low temperature [2], dye
solution [3], in which the stochastic perturbations
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arise from electronic/nuclear spins, random array
of two-level systems (TLSs) and phonon bath, re-
spectively. Because the interactions have various
time scales, they can lead to a time-dependent
broadening spectral line (heterogeneous line), the
process is so-called spectral diffusion (SD). SD is
usually investigated by hole-burning and stimu-
lated photon echo experiments by varying different
measurement time parameters 7y (e.g., time sep-
aration and waiting time in hole-burning and
stimulated echo experiments, respectively). Char-
acterizing SD can give us a complete picture of the
microscopic dynamics of the host system and its
influence on the guest chromophore.

Spectral diffusion is a typical conception in
frequency domain, but almost no theoretical work
started from the pure frequency domain point. In
frequency domain case, the theoretical treatment is
rather difficult even for the system modulated by a
single random process, because the radiation field
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couples with the system in the kinetic equations for
the hole-burning process [4]. When the number of
the stochastic processes increases, the equations
become more and more complex [5]. For a prac-
tical system containing an infinity of modulators,
it is impossible to give a clear form expressing the
SD process. So, hole-burning is considered as
equivalent to the stimulated echo, which is related
to the stimulated echo decay function through
a Fourier transform [6-8]. In fact, many exper-
imental results have shown the difference in the
behavior between the frequency and time do-
mains. For example, in ruby at low temperature,
the line width measured by free induced decay
(time domain) is 10 times large than that by tran-
sient hole-burning (frequency domain) [9,10]; in
some low temperature glasses, SD processes mea-
sured by stimulated photon echo and hole-burning
also have different behaviors [11,12]. So, it is nec-
essary to investigate SD in the pure frequency
domain.

Computer simulation seems to promise an op-
portunity. For example, Monte Carlo simulations
have been applied to study the time-dependent
broadening processes in Pr**:YAIO; (time do-
main) [13] and Eu’*:YAIO; (frequency domain)
[14]; single molecule spectroscopy in disordered
systems has also been simulated by the random
walk method [15]. In fact, all these works did not
consider the radiation field coupling, and were
simulated under very simply models. For much
more complex systems, such as low temperature
glasses, the average over the parameters of the
random array of TLSs is rather difficult to carry
out even without considering the numerous mod-
ulators in the host. To give a clear picture of SD in
the frequency domain, a concise analytical method
is needed.

In this paper, we only consider the SD pro-
cess after switching off the radiation field; first
we develop a concise analytical method to de-
scribe the SD in system with several sudden
jump processes. Then, starting from the standard
TLSs model, we study the SD in low tempera-
ture glasses for pure frequency domain case. Un-
der the standard approximation, the result of SD
goes as exactly the same form for time domain
case.

2. Spectral diffusion for systems modulated by 2n
sudden jump processes

We consider a system is modulated by 2n in-
dependent sudden jump modulators, which each
flips between the energy states of —F and E and
causes +0 frequency shift of the system. The sum
of frequency shift w, spreads within the range
[—2nd, 2nd]. Assume among 2n modulators n + k
with E and n — k with —E, hence w = 2k6. The
stationary distribution density at w = 2§ is

(2n)! 1\
P0G (2) “>

If n is large, it can be approximated by a
Gaussian form
P(K) =\ et @

- Voan

We denote P (¢) as the jump probabilities in the
time interval of ¢, for the path where 7 is the initial
state, f is the final state (if = £1), and can be
given by

P+*(t) = Peq— (1 - eiRt)a

()_ peq+( eiRt)? (3)
P++() 1—P+ (®),
() =1-P ()

where p,,. are the equilibrium population densi-
ties of up and lower states, respectively, and R is
the sum of the upward and downward rate con-
stants. According to the detailed balance at every
temperature, we have pe,./pe- = exp(—2pE),
where 2F is the energy difference between the up
and lower levels of the modulator.

If j is out of n + k£ modulators initially with E,
and (j — i) is out of n — k modulators initially with
—F flip odd times within time ¢, w(¢) = 2(k — i)J.
The probability is

min(n+k,n—k+i)

L (n+ K)(n — k)!
PUO= 2 T k=G — i~ k=77
X Pl_P(1— P )™ (1 —py

)

where k —n<i<k+n.
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Time dependencies of the line width can be
obtained from the first and the second moments of
the distribution equation (4):

ntk  min(ntkn—k+i)

‘ i(n+ k)l(n — k)!
0 Ty e, k== )l —k =+ )]
x Pl_Pi(1 7P+_)”+k (1= Py
ii’i (j +k)(n — k)!
lo/ojl(n_"k ]'z'(n—k—i)!
X Pl P (1=P, )" (1 =P )™

n+k
(n+k)' j ntk—j
=N = _p (1P
j:l(jfl)'(n+kfj)' +7( - )

N =R ek
;(i—l)!(n— Z)'P#(l P)
=m+k)P._ —(n—k)P_,
= (1 — e*Rl)[(n +k)pcq, — (n — k)pchr}
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n+k  min(n+k,n—k+i)
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(6)
and we have
() = (D)2 = [(n+ WP, (1 — P,.)

— (=R (1=P )" (1)

Since the system is always in the state of dy-
namical equilibrium, approximately, n+ k and
n — k are equal to 2np,,, and 2np,,_, respectively.
Hence, (i) is always zero. Note pgq, + peq- = 1,
Eq. (7) can be expressed as

() = ()" = 2nsech®(BE)(1 — )7 (8)
The time-dependent heterogeneous line width is

H(1) = H(oo)sech(BE)(1 — e *)"/? ©)

From Eq. (2), for large n as ¢ approaches to in-
finity, the line shape is a Gaussian one and H(oo)
is (2n)"?s.

When temperature is high enough, sech(fE) ~
1. The sudden jump process reduces to the bivalue
random telegraph one (P, = P_,). The spectral
diffusion goes as H(r) = H(o0)(1 — e *")"?, where
W is jump rate of random telegraph process.

As we have motioned above, (i) is always zero if
we consider the system is in the state of dynamical
equilibrium. That means the peak of the spectral
line will never shift during the spectral diffusion.
One can find that this treatment also implies the
condition of resonant laser exciting. In the case of
arbitrary exciting frequency (different value of k),
the peak shift of heterogeneous line can be given
by

wo(t) = 26(k — (i)

=26{k — (1 —e ™) [(n+ k) peq_
— (n = k)peq, ]} (10)
For random telegraph process, we have
wo(t) = 28(k — (i) = 2kse ™ (11)

3. Dephasing mechanism in low temperature glasses

In low temperature glasses, SD has been exten-
sively studied by both experimental and theoretical
methods [6-8,11,16]. SD can be observed in a very
large time range from nanoseconds up to days [16].

It is well known that low temperature glass can
be described as a random array of TLSs, which
was first proposed by Phillips to explain the
acoustic properties of disorder systems [17]. The
Hamiltonian of the TLS is determinated by two
parameters A, J [18]. Here, A is the asymmetry,
i.e., the energy gap between the localized states;
and J is the tunneling matrix element that couples
the two localized states. These TLSs are coupled to
the acoustic phonons of the glassy host. The cou-
pling induces flip-flop between the two eigenstates
of the TLS, which is called phonon-assisted tun-
neling. The sum of the upwards and downwards
jump rate can be given by Fermi’s golden rule [19]

R = ¢J?Ecoth(BT/2) (12)
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where E = (4? +J2)1/ * is the energy gap between
the TLS eigenstates, ¢ is a TLS—phonon coupling
constant, and § = 1/kgT (T is temperature, and kg
is Boltzmann’s constant).

The sudden jump model is used to describe the
TLS—chromophore interaction, which was first
introduced to explain the relaxation process in the
magnetic system at low temperature [20,21]. This
model promises a unique opportunity to solve the
coherent transient problems analytically. For a
single TLS at the position r, the flip-flop leads to a
shift in the chromophore’s transition frequency by
+o(r). o(r) = a(4/2Er*), where o is the TLS-
chromophore interaction constant, and r is the
distance between TLS and chromophore. The
probability distributions of the parameters A, J are
given by [22,23]

L4+ u
PA(A) = A1+ﬂ A#7 OgA gAmaxa
(13)
1
P(J)=————, 0<J<Jmax
J( ) Jln (Jmax/Jmin)’

where u is the phenomenological exponent for the
distribution of energy asymmetries. The above
model is called the standard model for low tem-
perature glasses, it leads to a approximately linear
relation of In(7y) for SD [7,22]. In theoretical
treatments, the value of u is taken in the range
from 0 to 1/3. Tt is widely believed that u = 1/3 is
more suitable for many glasses. The upper cutoffs
are taken as Joax, Amax > kgT. The low cutoff J,
is taken as J2 < 2ckT7Tep, Where e, is the
longest imaginable waiting time (on the order of
108 s [16]). It will be essentially a parameter-inde-
pendent model, if one choose the cutoff parameters
in this way.

Using the relation 4 = {E* — R/[cEcoth(BE/
2)]}"/?, the (4,J) average can be transformed into
a convenient (£, R) average. If a function f(E,R) is
essentially zero when E > Jyax, Amax, the (4,J)
average of f(E,R) can be expressed as [22,23]

Rmax (E) dR

ey =2 [Cape [T

min min (E)

R (n-1)/2
X (1 _Rimax(E)> f(E,R) (14)

where
B I+pu
’ Allnt\l)iln (Jmax/Jmin) ’
Rumax (E) = cE*coth(BE/2), (15)

Ruin(E) = cEJ?2, coth (BE/2),

min

Enin = Jmin and Emax = (Arznax + Jr%lax)

Although the standard model is very successful,
there still some experiments cannot be explained.
For this purpose, Silbey et al. modified the model
by introducing another phenomenological factor v,
while —1 the exponent for the distribution of the
tunneling matrix element was replaced by —(1 — v)
[23]. This model gave the time behavior of SD as
1 — exp[—v/2In(RexTw)], where Rer was the ef-
fective maximum averaged over the energy gap E.
There were also other modified models, which
started from various distribution of the parameters
A and J. As Bai and Fayer have pointed, the dif-
ferent SD behavior directly result from the differ-
ent flip rate distribution P(R) [24]. They derived a
general relation between a Ty dependence mea-
surement and P(R), which the derivative of the
stimulated echo decay function is directly pro-
portional to the Laplace transform of P(R).

Beside the flip rate distribution P(R), other
conditions can also effect the SD process. Re-
cently, Lazonder et al. proved that, the optical
excitation-induced heating mainly caused the dis-
crepancy from the predication by the standard
model [25]. Considering the time dependent heat-
ing, they demonstrated that it was no longer nec-
essary to extend the standard model by means of
adjustable parameters of P(R).

Since the standard model is widely adopted, for
the purpose of comparison, we will use it in this

paper.

4. Spectral diffusion by frequency domain method

To investigate SD in low temperature glasses,
we treat each subset with modulation frequency
o + Aw by the above model, then need finish the
averages of the spatial and the parameters of the
TLS. For a single TLS, the total heterogencous
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line width is the sum of all subsets, which is the
average over the TLS—chromophore distances and
orientations. Considering continuous limit, we have

H*(Ty) = 4n(1 — e 2kT")sech? (BE/2)

x / o’ pr*dr

min

= HZ(oo)seChz(ﬁE/Z)(l _ C_ZRTW)7

(H<oo> - \/2”%) (16)

where p is the TLS density, wm.x = (024 /2Er,),
and rp;, 1S minimum distance. Note that the lower
limit of the integral cannot be extended to zero, in
contrast to time domain case. One can find that the
static broadening H (c0) is just the second moment
line width in the continuous lattice limit, which is
extensively used in magnetic systems [26].

If we assume ry,;, is equal to the distance be-
tween the two nearest TLSs, using the relation

prd. =0.17 [27], we get
_ 1/2 f _ A—2RTy\1/2
H(E,R, Ty) = 1.4n ocpEsech(ﬁE/Z)(l e )
(17)

In following, we take the average over the pa-
rameters E, R by both two paths, respectively.
Because of the sech(fE/2) factor, H(E,R, Ty) is
obviously the required class of functions averaging
over E, R. Using Eqgs. (14) and (15), set x = 2R Ty,
z = BT, we have

H(Ty) = 0.71' *aPyp (ks T)' ™

:BEITI'CIX
X / dzz"sech(z/2)

BEmin
2;1nax (Z) Tw dx x u/z
X /~ e ——
WRuin@Tw X 2R max (Z) Ty
x (1—e™)"? (18)

where R (z) = I'z*coth (z/2), Ruin(z) = I'2J2, %
coth(z/2), I' = c(ksT)’.

By the same consideration as Ref. [22], the lower
and up limits of the z integral can be safely taken to
0 and infinity, respectively. Then consider the lower
limit of the x integral. With the assumption of Jyy,
one has 2ckpTTexp i, Tw < Tiw/Texp- Since the

min

largest waiting time Ty ~ Texp, SO 2R 2)Tw < 1
is never invalid. We can also set it to zero. These
are so called the standard approximation for SD
[22]. With these treatment, Eq. (18) can be given as

H(Ty) = 0.7n'2aPyp(kT)" ™

X / dzz"sech(z/2)
0

2I'Ty 23 coth (z/2) dx
x / dr
0

X

X u/2 12

1-— 1—¢e™™

% ( 2 coth (Z/Z)TW> (1=e7)
(19)
Furthermore, one c%n also substitute the term

~ I3

1 — (x/2Rumax (2) Tir) by 1, which is a very
well approximation éxcept x is close to the upper
limit of the x integral and 7T) has a very small

value. For the x integral, we can divide it into two
parts

2I'Tyy 2% coth (z/2) dx
/ —(1—e™)"?
0 X

1 2I'Ty 23 coth (z/2)
dx
:/ —(l—e”“)l/z—i—/ dx
0 1

X

- qn-a-enny

X

= 1.852 + In[2I'z* coth (z/2) T

2I' Ty 2% coth (z/2) 1
+ / dx—[(1
1 X

The last term rapidly tends to be a constant as
the up limit of the integral increases. Since
2I'Tyz coth (z/2) usually has a large value, we can
substitute it with infinity. The value of the nu-
merical integral is —0.117, this small value prom-
ises that the above approximation is valid for
2I'Tyz* coth(z/2) > 1. Then we have

—e) 1) (20)

H(Ty) = 0.7 2aPyp (ks T)' ™
x {C(u)In[c(keT)’Ty] + Di(w)}  (21)

where
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Fig. 1. Waiting time dependence of heterogeneous line width, results in frequency and time domains under the standard approxi-

mation: (a) u = 0; (b) u=1/3.

= /OO dzz"sech(z/2)

(22)

D (i) =2.428C(u / dzz"sech(z/2)

x In[Z’ coth (z/2)]

Note that the above heterogencous line width
contains all broadening contributions except for
the natural line width. Hence, for the pure SD line
width, one need to subtract the pure dephasing line
width of two-pulse echo decay (1/n73). In fact, this
procedure should be done at the beginning of the
average over E, R. But it is difficult to determinate
T for a single TLS, so is convenient to subtract the
averaging 1/n7; from Eq. (21). Under the stan-
dard approximation, 1/n7; is well known as [7,22]
2

T 1
T = gacPop(kBT) B (u)

where B(0) = 7.328, and B(1/3) = 7.881.

Subtracting this contribution, we get the final
SD line width for the pure frequency domain case

H(Ty) = 0.71' *aPyp (ks T)" ™
x {C(w) In[c(ksT)’ Ti] + D(u)} (24)

where D(u) = D;(u) — 0.238n%2B(u). C(u) and
(1) can be calculated numerically. For example,
0)=m, C(1/3)=3.788, and D(0) = 3.498,
(1/ 3) = 8 766.

(23)

D
C
D

It is very amazing that the result is exactly the
same as the time domain one (the stimulated echo
decay result) under the standard approximation
(see Eq. (36) in Ref. [22]), however the values of
C(p) and D(u) are different. Since we already as-
sume that 7Ty is not very small, the above re-
sult does not give a zero value when Ty — 0.
For sufficiently large Ty, the factor D(i) can
be neglected. SD is dominated by the term
In[c(ksT)’ Tyy]. The time-dependent heterogeneous
line width is proportional to T'** with a multi-
plicative InT correction, and increases as In7j.
Note that C(0) =2 and C(1/3) =2.042 for time
domain case, we have the ratios of the SD line
width in two domains are 1.2 and 1.4 for u =0,
1/3, respectively. The frequency method gives a
little larger value of the SD line width. In Fig. 1,
we show the comparison of the dependence of the
heterogeneous line width H(Ty) on Ty over 11
orders, for frequency domain and time domain
under the standard approximation. In the calcu-
lation, we use the typical values of the parameters
cky =10 K s, T=1K.

5. Conclusions
We develop a concise analytical method to de-

scribe the spectral diffusion in the system with
several sudden jump modulators from frequency



H. Wang et al. | Optics Communications 189 (2001) 79-85 85

domain point. Spectral diffusion of chromophores
in low temperature glasses is investigated by this
method with the standard TLS model. Under the
standard approximation, the spectral diffusion has
exactly the same form as the stimulated photon
echo result, however it gives a little larger value of
the line width. The time-dependent heterogeneous
line width is proportional to T'*# with a multi-
plicative InT correction, and increases as In 7.
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