能量迁移的

是上述模型均只考虑了施主

并建立了多极

传递,并没有计及施主

围按壳层统计分布时施主的发光时间演化曲线

互作用

光时间演化的重要因素

第

7

卷 第

期

1998

掺稀土离子发光材料的发光强度随时间的演化

综合模型,对

多极作用下晶格体系内受主在施主周

和

间交叉弛豫能量传递是偶极

作用,作用常数

引 言

粗略地与

跳跃时间

作用,作用常数

为

能量传递包括:激发态的

离子四种低掺杂浓度下

等,与

能量传递和

能量传递和

能量传递及

模型的研究

1

2

V-F-B

2

D-D

V-F-B

2

D-D
2.2 V-F-B 前言

\begin{equation}
W_{12} = \frac{C_{12}^{60}}{R^6} + \frac{C_{12}^{80}}{R^8} + \frac{C_{12}^{100}}{R^{10}} + \ldots
\end{equation}

\begin{equation}
W_{12} = \frac{C_{12}^{60}}{R^6}.
\end{equation}

2.3 V-F-B 方法

\begin{equation}
l(t) = \int_0^t 0\exp \left(-\frac{t}{\tau_0}\right) - k^0 \tau_0 \frac{1}{\tau_0} \sum_{n=1}^{N_n} O_{n}^{\alpha} x^n
\end{equation}

\begin{equation}
l(t) = \int_0^t 0\exp \left(-\frac{t}{\tau_0}\right) - k^0 \tau_0 \frac{1}{\tau_0} \sum_{n=1}^{N_n} O_{n}^{\alpha} x^n
\end{equation}

3.1 \ldots

\begin{equation}
\rho = \frac{1}{3} \frac{\mu}{m} \frac{1}{R_0} \frac{1}{\tau_0} \sum_{n=1}^{N_n} O_{n}^{\alpha} x^n
\end{equation}

\begin{equation}
\rho = \frac{1}{3} \frac{\mu}{m} \frac{1}{R_0} \frac{1}{\tau_0} \sum_{n=1}^{N_n} O_{n}^{\alpha} x^n
\end{equation}
用摩尔掺杂浓度为！时，能量传递可以忽略，发光时间衰减曲线非常接近单指数，得到激发态的本征寿命是！在此基础上，采用扩散模型对摩尔掺杂浓度！分别为！，！，！，！的四条衰减曲线分别进行了拟合，结果表明此体系能量传递作用为偶极偶极作用，并且存在着很强的能量迁移（也是偶极偶极作用，但能量迁移作用参数！比！大得多）。

图 67：体系内！，！，！，！离子在！晶体系中，！为稀土掺杂离子，它占据！的格位且在空间上是分立分布的。该体系中一个！周围各个壳层的格位数、到！距离等壳层信息如表 67所示。在用！模型进行发光衰减曲线的数值拟合时，参数本征衰减率！即为前述本征寿命！的倒数，即为：而描述最近邻间能量传递率的参数！是可调节的。当把！的值取为！时，发现掺杂浓度！取！时计算的数值与实验数据符合较好；但是对其余三个掺杂浓度（！），只在最初的！内符合得较好，在！稍大时，！模型所给出的发光衰减曲线要比实验曲线衰减慢得多（如图 67），这预示着能量迁移的影响。

3.2 V-F

La$_{1-x}$Er$_x$F$_3$ 与 $^{5}H_{15/2}$ 与 $^{4}I_{15/2}$ 转换的量子态图

<table>
<thead>
<tr>
<th>n</th>
<th>N_o</th>
<th>R_0nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0.410</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.425</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.430</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.442</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0.600</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.614</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

La$_{1-x}$Er$_x$F$_3$ 与 $^{5}H_{15/2}$ 与 $^{4}I_{15/2}$ 转换的量子态图

当该体系内只有能量传递这一种机制，而没有间能量迁移存在，那么应用壳层模型仅仅通过调节！的数值，应该得到与实验衰减数据符合得很好的计算结果。于是我们选取了掺杂浓度！为！的发光时间衰减实验数据作为研究对象，任意调节！的值，发现无论取什么值都不能使拟合结果很好。作为例子图 68给出了将！的数值分别取！，！，！，！四个特殊值（与！取值不变）计算得到的曲线和实验数据。可以很明显地看出，除了！的数值取！计算得到曲线在最初的！内可以和实验数据较好地符合外，其他！的数值分别取！结果都很差。

图像 2 295K La$_{1-x}$Er$_x$F$_3$ 与 $^{5}S_{5/2} \rightarrow ^{4}I_{15/2}$ 转换的量子态图

![La$_{1-x}$Er$_x$F$_3$](image)
制所造成的率相联系的一个量，它表示的是平均经过整个拟合时间段内都不能和实验曲线很好地符合。示时，我们的拟合和行的拟合一样成功（如图）。这一个参数的取值固定为，实线的值为，模型只调节的值为，是和离子摩尔掺杂浓度为，这说明了能量迁移不和体系内态的发光时间衰减有着重要关系的近似公式得到的理论计算值，对应，对应，对应，对应，从上面的计算得知，对值随综合模型将对应，的对数值计算得到的值对摩尔掺杂浓度为，对应，实时，可以得到较好的拟合成跳跃时间的近似关系为，。最后我们还对通过的取值如表，用的公式计算得到的理论计算值，并将其在图中给出。从图看，当离子间的平均跳跃时间小，能量发生一次迁移的平均时间也就相等，能量发生一次迁移的平均时间于体系内离子的本征寿命在同一量级，甚至大于离子的掺杂浓度比较低，能量迁移不和体系内态的发光时间衰减有重要关系，的近似公式得到的理论计算值，并将其在图中给出。从图看，当离子间的平均跳跃时间小，能量发生一次迁移的平均时间也就相等，能量发生一次迁移的平均时间于体系内离子的本征寿命在同一量级，甚至大于离子的掺杂浓度比较低，能量迁移不和体系内态的发光时间衰减有着重要关系。这一个参数的取值固定为，实线的值为，模型只调节的值为，是和离子摩尔掺杂浓度为，这说明了能量迁移不和体系内态的发光时间衰减有着重要关系的近似公式得到的理论计算值，对应，对应，对应，对应，从上面的计算得知，对值随综合模型将对应，的对数值计算得到的值对摩尔掺杂浓度为，对应，实时，可以得到较好的拟合成跳跃时间的近似关系为，。最后我们还对通过的取值如表，用的公式计算得到的理论计算值，并将其在图中给出。从图看，当离子间的平均跳跃时间小，能量发生一次迁移的平均时间也就相等，能量发生一次迁移的平均时间于体系内离子的本征寿命在同一量级，甚至大于离子的掺杂浓度比较低，能量迁移不和体系内态的发光时间衰减有着重要关系。这一个参数的取值固定为，实线的值为，模型只调节的值为，是和离子摩尔掺杂浓度为，这说明了能量迁移不和体系内态的发光时间衰减有着重要关系的近似公式得到的理论计算值，对应，对应，对应，对应，从上面的计算得知，对值随综合模型将对应，的对数值计算得到的值对摩尔掺杂浓度为，对应，实时，可以得到较好的拟合成跳跃时间的近似关系为，。最后我们还对通过的取值如表，用的公式计算得到的理论计算值，并将其在图中给出。从图看，当离子间的平均跳跃时间小，能量发生一次迁移的平均时间也就相等，能量发生一次迁移的平均时间于体系内离子的本征寿命在同一量级，甚至大于离子的掺杂浓度比较低，能量迁移不和体系内态的发光时间衰减有着重要关系。这一个参数的取值固定为，实线的值为，模型只调节的值为，是和离子摩尔掺杂浓度为，这说明了能量迁移不和体系内态的发光时间衰减有着重要关系的近似公式得到的理论计算值，对应，对应，对应，对应，从上面的计算得知，对值随综合模型将对应，的对数值计算得到的值对摩尔掺杂浓度为，对应，实时，可以得到较好的拟合成跳跃时间的近似关系为，。最后我们还对通过的取值如表，用的公式计算得到的理论计算值，并将其在图中给出。从图看，当离子间的平均跳跃时间小，能量发生一次迁移的平均时间也就相等，能量发生一次迁移的平均时间于体系内离子的本征寿命在同一量级，甚至大于离子的掺杂浓度比较低，能量迁移不和体系内态的发光时间衰减有着重要关系。这一个参数的取值固定为，实线的值为，模型只调节的值为，是和离子摩尔掺杂浓度为，这说明了能量迁移不和体系内态的发光时间衰减有着重要关系的近似公式得到的理论计算值，对应，对应，对应，对应，从上面的计算得知，对值随综合模型将对应，的对数值计算得到的值对摩尔掺杂浓度为，对应，实时，可以得到较好的拟合成跳跃时间的近似关系为，。最后我们还对通过的取值如表，用的公式计算得到的理论计算值，并将其在图中给出。从图看，当离子间的平均跳跃时间小，能量发生一次迁移的平均时间也就相等，能量发生一次迁移的平均时间于体系内离子的本征寿命在同一量级，甚至大于离子的掺杂浓度比较低，能量迁移不和体系内态的发光时间衰减有着重要关系。
计后一施主激发对激发态布居的贡献）所造成的激发态布居概率的衰减！

如果我们将能量传递与能量迁移同时纳入壳层模型给出的发光时间演化表达式（’），则得到了相应的（’），虽然（’）不是在（’）简单地乘上一个指数衰减因子（因模型计入了很多施主间的迁移），但是它应近似等于（’）·（’）*+（’），

从等人的结果知，间作用也为偶极偶极作用，于是在计算（’）时，参数仍取为3；本征衰减率仍取4(5'678,4’);因为9:’既是施主也是受主，所以壳层参数也完全一样；最近邻能量传递率应为4>?@((8,4’),3(’)

图给出了BC[!](’)/(!’)曲线，此曲线的斜率应为!数值通过对上升段曲线（此段曲线恰对应于迁移对施主发光衰减影响最明显的时间段，以后衰减主要由传递决定）进行分析，我们得到了与四种施主浓度相对应的平均跳跃时间值（如表@)，并将!’的值和前面用%#&#D模型进行拟合获得的拟合值进行比较，发现它们均在同一量级，且在+较大时符合较好。这不仅提供了估算平均跳跃时间!’的另一种方法，而且也说明了我们所用的%#&#D模型在一定程度上是内部自恰的、合理的。
A STUDY ON ENERGY TRANSFER AND ENERGY MIGRATION MODELS FOR RE IONS LUMINESCENCE SYSTEM *

1 Structure Research Laboratory, University of Science and Technology of China Hefei 230036 China.
2 Laboratory of Excited State Processes, Chinese Academy of Sciences Changshun 130021 China.
3 Department of Physics, University of Science and Technology of China Hefei 230026 China.

Received 17 July 2000, revised manuscript received 11 August 2000.

ABSTRACT

By Application of the V-F-B model which is obtained by combining the Vasquez-Flin[9] V-F[9] model for donor-acceptor energy transfer and the model of Burshtein for donor-donor energy migration[9] the experimental luminescence decay curves of $4^2S_{1/2}$ state of Er$^{3+}$ in LaF$_3$ at 295K for four different concentrations are re-simulated successfully. It is found that in this system the donor-acceptor interaction is dipole-dipole interaction[9] and that the donor-acceptor interaction constant C_{DA} is 4.75×10^{-41} cm5 s. The results are all in agreement with the previous results of Okamoto. However[9] the hopping time τ_0 obtained from the above simulation in proportional to $x_D^{-1.2}$[9] x_D is the donor concentration[9] which is different from the theoretical dependence on the donor concentration[9] that is $\tau_0 \propto x_D^{-2}$. In addition[9] by considering donor-acceptor energy transfer and donor-donor energy migration within the V-F model at the same time[9] we obtain the estimated values of the hopping time τ_0^* for four different concentrations[9] which are in reasonable agreement with the values of τ_0 obtained from the above simulation. It seems that the V-F-B model is rather self-consistent.

* Project supported by the National Natural Science Foundation of China[9] Grant No. 19874058[9].