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Abstract  In this paper, the optical characteristics of new 
type hemispherical grid subwavelength grating are studied 
by using multi-level column structure approximation and 
rigorous coupled-wave analysis. This kind of grating could 
be fabricated by chemical methods, thus simplifying the fab-
rication technology of subwavelength gratings for visible 
light. By computer simulation and calculation, the hemi-
spherical grid subwavelength gratings are proved to have 
antireflective characteristics. Two design schemes of this 
kind of grating are presented. In the first scheme, the grating 
could achieve a reflectivity as low as 3.4416×10−7, which can 
be adapted to 0.46―0.7 μm of visible waveband and ±12° 
incident angle field. In the second scheme, the grating can 
achieve a reflectivity as low as 3.112×10−4 and adapted to the 
whole visible waveband and ±23° incident angle field. The 
application field of the latter scheme is wider than that of the 
former. The results of this paper could provide reference for 
the applications of the hemispherical grid subwavelength 
gratings for the visible waveband. 
Keywords: hemispherical grid subwavelength gratings, rigorous 
coupled-wave theory, antireflection, vector diffractive analysis, visi-
ble waveband. 
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Subwavelength surface-relief gratings whose periods 
are smaller than incident wavelength have antireflective 
characteristics[1―4]. People could etch the surface of an 
optical element or a substrate to fabricate subwavelength 
surface relief grating to acquire low reflectivity; therefore, 
the grating could take the place of conventional optical 
thin films. Because the material of the surface relief grat-
ing is the same as its substrate, the stability of the grating 
is better than that of the conventional optical thin film and 
the localization of limited material of thin films is avoided. 
At present, the surface relief pattern generated by electron 
beam lithography, laser direct writing lithography or pho-
tomask exposure, etc. have been transferred to the surface 
of an optical element through replication or reactive ion 
etching to fabricate subwavelength antireflective grat-
ings[5―14]. Now the fabrication technology of subwave-
length gratings for microwave and infrared is mature. 

However, the pattern exposure and transferring procedure 
of the subwavelength gratings for visible light is not easy 
to control and fabricate and the fabrication takes much 
time. Recently, monolayer colloidal spherical micropar- 
ticle arrays have been fabricated using chemical methods, 
whose diameters range from 0.02 to 10 μm[15]. Moreover, 
colloidal stamps, which are the duplicate negatives of the 
microparticle arrays, have been made and the two-dimen- 
sional demitional hemispherical subwavelength surface 
relief gratings could be generated on the surfaces of opti-
cal elements by using a sol-gel technology to transfer the 
surface shape of the colloidal stamps onto the surface of 
optical elements[16―18]. As this technology can produce 
subwavelength gratings for visible light with fine quality 
and precision, it attracts the attention of more and more 
people and becomes a focus of research. In this paper, we 
use the rigorous coupled-wave theory to analyze the char-
acteristics of the hemispherical grid subwavelength grat-
ing, which is approximated by the multi-level columned 
structure. Moreover, the relations between the antireflec-
tive characteristics of the new kind of subwavelength 
grating and the grating structure parameters are acquired. 
The results show that this kind of grating has fine antire-
flective characteristics.  
1  The foundation of analysis model of hemispherical 
grid subwavelength grating and the rigorous cou-
pled-wave analysis 

The geometry structure of hemispherical grid sub-
wavelength grating is shown in Fig. 1. To apply the rigor-
ous coupled-wave analysis in our research, we use a mul-
tilevel column array structure shown in Fig. 2 to simulate 
the grating. In Fig. 2, we could assume that the radius of 
the hemisphere to be R, diameter of the hemisphere to be 
D, T to be the period of the grating, the depth of the lth 
level to be hl and the radius of the lth level to be rl . 
 

 
 

Fig. 1.  A two-dimensional subwavelength grating with hemispherical 
grid. 
 

To analyze the optical properties of the multi-level 
column array shown in Fig. 2, we take each level as a sin-
gle step column array structure shown in Fig. 3 and apply 
boundary conditions between the connective levels. 

We adopt the method illustrated in ref. [19] to analyze 
the lth level single step column array. In Fig. 3, the space 
is divided into three regions denoted by I, II and III. In 
regions I and III, the electric field of light wave is ex-
pressed in the form of a series of plane-wave. Let k1 and u 
be the wavevector and amplitude of electric field Ei of the  

Chinese Science Bulletin  Vol. 50  No. 13  July  2005 1309 



 
 
 
 

ARTICLES 

 
 

Fig. 2.  Geometry of the multi-step column structure and the hemispherical subwavelength grating. 
 

 
 

Fig. 3.  Geometry of the 2-D columned grid array diffraction problem analyzed. 
 

incident wave and Rmn and Tmn be the amplitude of the 
reflected waves with wavevector k1mn and the transmitted 
waves with wavevector k3mn, respectively. According to 
the Rayleigh expansions, the electric fields may be ex-
pressed as 
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where Ei=uexp(ik0·r). 
According to the Maxwell equation, the magnetic field 

of incident wave, reflective wave and transmitted wave 
can be expressed as follows: 
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In region II, the electric and magnetic fields of light 
wave are labeled as EII and HII and they can be expressed 
by the form of a series of space harmonic waves that only 
vary along z axis, i.e. 
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According to the Floquet theorem, there are only x com-
ponent and y component in the grating modulation region 
(region II). So the wavevectors in eqs. (6) and (7) are 
 0 2π / ,xm x xk k m T= +  (8) 
  (9) 0 2π / .ym y yk k n T= +
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And the z components in regions I and III are 

 I 2 I 2
0 ,zmn xm ynk k k kε= − − 2  (10) 

 III 2 III 2 2
0 .  (11) zmn xm ynk k k kε= − −

Because of the periodicity configuration of grating 
modulate region, the dielectric constant ε  can be ex-
panded in the Fourier series   
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It is very important to solve the parameter εpq according 
to different grating profiles in the procedure of rigorous 
coupled-wave analysis and calculation. For the lth level 
column grid subwavelength grating, the expression of ε is  
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Substituting eq. (14) into eq. (13), we have 
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where Jl(2π rρ) is Bessel J function and 
1/ 222
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Assume the time factor to be exp(−iω t) and substitute 
eq. (13) and electric field EII and magnetic field HII of 
region II into Maxwell equations set. Then according to 
Laurent law, we have 
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To meet the boundary conditions, the tangential com-
ponent of the electric and magnetic field should be con-
tinuous at the boundary of regions I, II, and III; that is, the 
electric field of eqs. (1) and (2) have the following rela-
tions at the positions of z=0 and z=h.  
  (20) 0 0 (0),x x
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 ( ) .x x
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And according to Maxwell equations, the magnetic field 
has the following relations at the positions of z=0 and 
z=h: 
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Maharam and Gaylord [20] have given the solutions of 

eqs. (16)―(19) which are composed of the eigenvalues 
and eigenvectors of a series of correlation coefficient ma-
trixes, whose concrete forms are as follows: 
 1
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Substitute eqs. (28)―(31) into eqs. (16)―(19). Then 

the characteristic equation with the following form is ob-
tained, namely 
 ,Aλω ω=  (32) 
where λ is a diagonal matrix composed of λj in eq. (28)―
(31), ω is an eignvector matrix composed of ωl

mn,j (l=1, 2, 
3, 4) in eqs. (28)―(31) and A is a constant matrix. 

Besides boundary conditions of each layer given by eqs. 
(20)―(27), each step should fulfill the special boundary 
conditions between layers, namely 
  (33) , , 1( ) ( ),x x

mn l l mn l lE h E h+=

  (34) , , 1( ) ( ),y y
lmn l mn lE h E h+=
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where l = 1, 2, …, L−1 denotes the layer to which the 
variable belongs. In the procedure of calculation, we have 
the relations 
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By recursion rule, we have  
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From eq. (38), we know that Cl and the electromagnetic 

field of each level can be solved subsequently as long as 
the constant of the first layer C1 and the expressions of 
constant matrix Al of each level are given.  

The diffraction efficiency of the reflected and transmit-
ted waves may be given by the following expressions: 
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where Re denotes the real part of a variable, and kIzmn and 
kIIIzmn are the components of the wavevectors k1mn and k3mn 
in the z-direction, respectively. For a lossless grating, the 
permittivity εIII is a real number and conservation of en-
ergy requires that 
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2  Analysis and design 
After compiling matlab program using the formula 

above, we could carry through numerical calculations and 
study the optical characteristics of the hemispherical grid 
subwavelength grating. When the total number L of the 
steps is large enough (L≥8), the multi-step column struc-

ture may approximate the hemispherical grid grating with 
very little error. In this paper, we use a 16-level column 
structure to approximate the hemispherical grid sur-
face-relief grating. As this kind of grating is often fabri-
cated on a glass substrate, the refractive index of the grat-
ing ns =1.5 and the refractive index of the surrounding 
media ni=1 are adopted. 

A hemispherical grid grating has two important struc-
ture parameters, period T and diameter D. To acquire fine 
antireflective characteristics over the whole visible wave-
band, we choose 0.55 μm as the center wavelength. After 
the effects of period T and diameter D on the reflectivity 
are determined and the minimum reflectivity is obtained, 
the minimum reflectivity and the value of period T and 
diameter D can be solved. The relation curve of the reflec-
tivity, period T and D/T with parameters λ =0.55 μm and 
α =0° is shown in Fig. 4. From this figure, we could see 
that periods T and D/T have great effect on the reflectivity, 
and the low reflectivity that approaches 0 could be ac-
quired by choosing appropriate parameters. From the nu-
merical results it follows that the reflectivity decreases to 
the minimum of 3.4416×10−7 when T equals 0.45714 μm 
and D equals 0.348295 μm. 

 

 
 
Fig. 4.  Relation among reflectivity, T and D/T, with parameters: λ=0.55 
μm, α =0°. 
 

Now we analyze the antireflective characteristics of the 
grating over the whole visible waveband with parameters 
T=0.45714 μm and D=0.348295 μm. The relation curve of 
reflectivity and incident wavelength λ is shown in Fig. 5. 
From this figure we see that when incident wavelength 
varies from 0.46 to 0.7 μm the reflectivity is below 
0.081% and the antireflective function is notable; how- 
ever, in the range from 0.4 to 0.45 μm of the incident 
wavelength, reflectivity is above 2.5% and the antireflec- 
tive effect is unapparent because the period of the grating 
is larger than that of the incident wavelength, and the 
grating is not subwavelength grating any more. However, 
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if we want to acquire good antireflective function in the 
waveband from 0.46 to 0.7 μm, the parameters T=0.45714 
μm and D=0.348295 μm are optimal. 

 

 
 
Fig. 5.  Relation between reflectivity and the incident wavelength λ, 
with parameters: T=0.45714 μm, D=0.7619T, α=0°. 
 

To acquire the subwavelength grating with fine 
antireflective characteristics over the whole visible 
waveband, the diameter and period have to be redesigned. 
A period of approximately 0.45714 μm is needed to obtain 
low reflectivity; however, the period should be smaller 
than 0.4 μm in order to realize low reflectivity in the 
shorter wavelength part of the visible waveband. 
Therefore, considering the two factors above, we choose 
0.399 μm as the period to find the optimal value of the 
diameter. The relation curve of reflectivity and D/T with 
the parameter T=0.399 μm is shown in Fig. 6. From this 
figure, we see that the reflectivity arrives at the minimum 
of 3.112×10−4 with the parameters D=0.785T=0.3132 μm.
Though this minimum is about 1000 times that of the first 
case, it could also satisfy the practical 
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requirement. 
Fig. 7 presents the reflectivity curves for this kind of 

gratings over the visible waveband with the parameters 
T=0.399 μm and D=0.785T. The reflectivity of the grating 
is below 0.35% over the whole visible waveband, satisfy-
ing the practical need. 

Next, we study the variety regularity of reflectivity 
when the incident angle varies. Fig. 8 shows the variety 
regularity of the two gratings’ reflectivity designed above 
when the incident angle varies. The numerical results 
show that the two gratings designed in this paper acquire a 
reflectivity as low as 0.2% when the incident angle varies 
in the region of ±12°and ±23°, respectively. 
3  Conclusions 

Using the rigorous coupled-wave theory, we studied the 
antireflective characteristics of the hemispherical grid  

 

 
 

Fig. 6.  Relation between reflectivity and D/T, with parameters λ =0.55 
μm, T=0.399 μm, α=0°. 
 

 
 

Fig. 7.  Relation between reflectivity and the incident wavelength λ, 
with parameters T=0.399 μm, D =0.785T, α =0° 
 

 
 
Fig. 8.  Relation between reflectivity and the incident angle α, with 
parameter λ=0.55 μm. 



 
 
 
 

ARTICLES 

1314 Chinese Science Bulletin  Vol. 50  No. 13  July  2005 

subwavelength gratings. The numerical results are given 
by programming with matlab language, and two schemes 
are designed for visible wavebands. The first grating de-
signed in this paper acquired a reflectivity as low as 
3.4416×10−7 at a center wavelength of 0.55 μm with the 
incident angle variety region of ±12° and the second grat-
ing acquired a reflectivity as low as 3.112×10−4 with an 
incident angle variety region of ±23°. Though the second 
minimum reflectivity is 1000 times that of the first case, 
the difference is negligible in practical applications. When 
an optical system is strict with the reflectivity and not 
strict with the waveband and the incident angle, we 
choose the first scheme; however, the second scheme is 
more applicable for other instances. The results of this 
paper provide theoretic references for the application of 
the hemispherical grid subwavelength gratings for the 
visible waveband.  
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