Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hydrothermal synthesis of a copper(I) stair-like polymer: catena-poly[[bis[5-(4-bromophenyl)-2-(4-pyrimidyl)pyridine]-dicopper(I)]-di- μ_{3}-bromo]

In the title compound, $\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{2}\right)_{2}\right]_{n}$, each Cu atom displays a distorted tetrahedral coordination formed by three Br atoms and one N atom from 5-(4-bromophenyl)-2-(4pyridinyl)pyridine. Each Br atom bridges three Cu atoms, forming a stair-like structure along the b axis.

Comment

A remarkable series of copper(I) halides has been investigated due to their rich photophysical properties (Ford et al., 1999). Previously, the most quantitative photophysical study has focused on copper(I) tetranuclear complexes (Ryu et al., 1993). In recent years, much interest has been paid to other multinuclear copper(I) halide complexes with aromatic nitrogen-donor ligands (Ohi et al., 2005; Wang et al., 2005). As part of our research, we chose the conjugated 5-(4-bromo-phenyl)-2-(4-pyridinyl)pyridine (bppy) molecule as a pendant ligand to synthesize a new copper(I) halide complex. We report here the crystal structure of $\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}(\mathrm{bppy})_{2}\right]_{n}$, (I).

Selected bond lengths and angles for (I) are given in Table 1. In (I), each copper(I) cation displays a distorted

Received 12 February 2006
Accepted 6 March 2006
(C) 2006 International Union of Crystallography
${ }^{\text {a Key Laboratory of the Excited States Processes, }}$ Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China, ${ }^{\mathbf{b}}$ Graduate School of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China, and ${ }^{\text {c Faculty of Chemistry, }}$ Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: lib020@ciomp.ac.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.079$
$w R$ factor $=0.213$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Chun-Bo Liu, ${ }^{\text {a,b }}$ Bin Li, ${ }^{\text {a* }}$
Guang-Bo Che ${ }^{\text {a,b }}$ and Qun Liu ${ }^{\text {c }}$

Figure 1

View of the local coordination of Cu^{I} atoms, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Atoms with the suffix A are generated by the symmetry code $(x, 1+y, z)$.

Figure 2
The stair-like structure of (I). H atoms have been omitted for clarity.
tetrahedral coordination provided by three Br atoms and one N atom from bppy. Each Br atom bridges three copper atoms (Fig. 1), forming a zigzag stair-like structure along the b axis, as shown in Fig. 2.

In the crystal structure of (I), there are no supramolecular interactions, such as hydrogen bonds or $\pi-\pi$ stacking forces.

Experimental

Compound (I) was hydrothermally synthesized under autogenous pressure. A mixture of bppy, CuSO_{4} and water in a 2:1:5000 molar ratio was sealed in a Teflon-lined autoclave and heated at 453 K for 3 d. Red-orange needle-shaped crystals were obtained in about 42% yield.

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}\right)_{2}\right]$
$M_{r}=909.26$
Monoclinic, $P 2_{1} / c$
$a=24.7379(15) \AA$
$b=3.9383(2) \AA$
$c=32.063(2) \AA$
$\beta=106.3440(10)^{\circ}$
$V=2997.5(3) \AA^{3}$
$Z=4$

Data collection
Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
\quad (SADABS; Bruker, 1998)
$T_{\text {min }}=0.554, T_{\text {max }}=0.708$
15498 measured reflections
$D_{x}=2.015 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 576 reflections
$\theta=1.3-26.1^{\circ}$
$\mu=6.78 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Needle, red-orange
$0.40 \times 0.07 \times 0.05 \mathrm{~mm}$

> 5848 independent reflections
> 3560 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.151$
> $\theta_{\max }=26.1^{\circ}$
> $h=-27 \rightarrow 30$
> $k=-4 \rightarrow 4$
> $l=-39 \rightarrow 35$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1201 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.34 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-2.40 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{Cu} 1$	$2.013(5)$	$\mathrm{Cu} 1-\mathrm{Br} 3^{\mathrm{i}}$	$2.5523(12)$
$\mathrm{N} 2-\mathrm{Cu} 2$	$2.026(6)$	$\mathrm{Cu} 2-\mathrm{Br} 4$	$2.4291(12)$
$\mathrm{Cu} 1-\mathrm{Br} 3$	$2.4615(12)$	$\mathrm{Cu} 2-\mathrm{Br} 3^{\mathrm{i}}$	$2.5518(12)$
$\mathrm{Cu} 1-\mathrm{Br} 4$	$2.5262(12)$	$\mathrm{Cu} 2-\mathrm{Br} 4^{\mathrm{i}}$	$2.5584(13)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Br} 3$	$119.79(18)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 2$	$121.01(18)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Br} 4$	$108.66(17)$	$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Br} 4$	$119.91(18)$
$\mathrm{Br} 3-\mathrm{Cu} 1-\mathrm{Br} 4$	$110.02(4)$	$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Br} 3^{\mathrm{i}}$	$105.64(17)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Br} 3^{\mathrm{i}}$	$104.30(18)$	$\mathrm{Br} 4-\mathrm{Cu} 2-\mathrm{Br}^{\mathrm{i}}$	$113.31(4)$
$\mathrm{Br} 3-\mathrm{Cu} 1-\mathrm{Br}^{\mathrm{i}}$	$103.52(4)$	$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Br}^{\mathrm{i}}$	$106.57(17)$
$\mathrm{Br} 4-\mathrm{Cu} 1-\mathrm{Br} 3^{\mathrm{i}}$	$110.06(4)$	$\mathrm{Br} 3^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{Br} 4^{\mathrm{i}}$	$106.19(4)$

Symmetry code: (i) $x, y+1, z$.
All H atoms on C atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The high $R_{\text {int }}$ value of 0.151 is the result of weak high-angle data. The highest peak is located $1.06 \AA$ from atom Br 3 and the deepest hole $1.04 \AA$ from Br4.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank Professors Ning-Hai Hu and Heng-Qing Jia of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, for supporting this work.

References

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Ford, P. C., Cariati, E. \& Bourassa, J. (1999). Chem. Rev. 99, 3625-3647.
Ohi, H., Tachi, Y., Kunimoto, T. \& Itoh, S. (2005). Dalton Trans. pp. 3146-3147.
Ryu, C. K., Vitale, M. \& Ford, P. C. (1993). Inorg. Chem. 32, 869-874.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, X. Q., Cheng, J. K., Wen, Y. H., Zhang, J., Li, Z. J. \& Yao, Y. G. (2005). Inorg. Chem. Commun. 8, 897-899.

