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A novel autofocusing algorithm using the directional wavelet power spectrum is proposed for time de-
layed and integration charge coupled device (TDI CCD) space cameras, which overcomes the difficulty
of focus measure for the real-time change of imaging scenes. Using the multiresolution and
band-pass characteristics of wavelet transform to improve the power spectrum based on fast Fourier
transform (FFT), the wavelet power spectrum is less sensitive to the variance of scenes. Moreover, the
new focus measure can effectively eliminate the impact of image motion mismatching by the directional
selection. We test the proposed method’s performance on synthetic images as well as a real ground
experiment for one TDI CCD prototype camera, and compare it with the focus measure based on
the existing FFT spectrum. The simulation results show that the new focus measure can effectively
express the defocused states for the real remote sensing images. The error ratio is only 0.112, while
the prevalent algorithm based on the FFT spectrum is as high as 0.4. Compared with the FFT-based
method, the proposed algorithm performs at a high reliability in the real imaging experiments, where it
reduces the instability from 0.600 to 0.161. Two experimental results demonstrate that the proposed
algorithm has the characteristics of good monotonicity, high sensitivity, and accuracy. The new algo-
rithm can satisfy the autofocusing requirements for TDI CCD space cameras. © 2012 Optical Society
of America
OCIS codes: 100.0100, 280.0280, 070.4790, 100.7410, 100.2960.

1. Introduction

The autofocusing technique is one of the most com-
monly used techniques for space cameras to ensure
high-quality images. With the development of intel-
ligent space cameras, the autofocusing method based
on image processing, whose large-scale application
will be the inevitable trend, has been adopted for
space cameras. As the core of this method is the
focus measure and there is no one focus measure that
can be applied well in all cases, it is essential

to design a robust focus measure with good evalua-
tion capability and stability according to the appli-
cation. The purpose of this paper is to study a
more robust focus measure for time delayed and in-
tegration charge coupled device (TDI CCD) space
cameras.

To improve the spatial resolution, the TDI mode of
CCD is widely used in space cameras. During the
TDI mode, the CCD captures an image of a moving
object while transferring integrated signal charges
synchronously with the object movement. So the ef-
fective integration time is increased by a factor of N,
which is equal to the number of TDI stages, and the
imaging system’s sensitivity and signal-to-noise
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ratio (SNR) are improved significantly. Although
the TDI mode is used, the spatial resolution cannot
be improved if focusing is not done before photo-
graphing [1]. Furthermore, the precise focusing is
required more for TDI CCD cameras because of
the multiple accumulations. However, the scenes
imaged by TDI CCD at arbitrary time are different,
which makes it difficult to select or develop the focus
measure functions. Several focusmeasureshavebeen
studiedover theyears [1–9].Obviously, thesemethods
are not applicable for TDICCD cameras, which either
require complex optical systems [1] or are sensitive to
noise and other nondefocus factors, such as the scenes
and image contrast [2–8]. Many improved focus mea-
sures have also been proposed and studied [9–12].
Some of these focus measures, such as centered
fourth-order image moments [9] and wavelet-based
measures [10], possess good defocus and noise sensi-
tivity. In particular, the wavelet-based measures,
which include wavelet band ratio (WBR) and energy
of wavelets (EOW), overcome the shortcomings of
the moment-based focus measure in the sensitivity
to the boundary effect [11]. However, these focusmea-
sures are not robust in variable imaging conditions,
such as varying illumination [12]. Recently, Tian pro-
posed a focusmeasure using image phase congruency
that is robust for noisy imaging sensors in varying
illuminations [12]. Nevertheless, the varying scenes,
whose influence is also remarkable in TDI CCD space
cameras, are not considered. To eliminate the influ-
ence of the varying scenes on the focus measure, a
method based on the power spectrum has been stu-
died, and has gotten auspicious results [13–15].

When different scenes are analyzed by the power
spectrum in the spatial frequency domain, it can be
shown that most arbitrary scenes do indeed theore-
tically have the same power spectra [16]. This offers
a foundation for the power spectrum-based auto-
focusing methods. However, it is well known that
the classical spectrum estimator, fast Fourier trans-
form (FFT) of the autocorrelation function, depends
essentially onagoodmeasure of themeandensity, dis-
ablestopreservethetimedependenceanddescribethe
evolutionary spectral characteristics ofnonstationary
processes, and is noise-sensitive [17]. In addition, the
image motion mismatching exists in TDI cameras,
which also causes a decline in image definition. The
FFT spectrum cannot distinguish it from defocus blur
flexibly accurately. So developing a robust focus mea-
surethatcanworkforTDICCDspacecameraswell isa
great challenge.

In this paper, we demonstrate a focus measure
using the wavelet power spectrum that is robust
for images with varying scenes and image motion
mismatching. The new focus measure is introduced
in Sections 2 and 4, and it is compared to the FFT
spectrum in Section 3. In Section 5, the new focus
measure’s performance on synthetic images as well
as the real ground experiment is shown. The results
show that the wavelet spectrum is more suitable for
TDI CCD cameras’ focus measure.

2. Two-Dimensional Discrete Wavelet Transform
Power Spectrum Estimator

Resting on the assumption that the same imaging
system’s input scene power spectrum is invariant
from scene to scene [16], the focus measures for
TDI CCD space cameras normally base on the mea-
surements of images’ power spectra. This invariance
assumption can be obtained from the statistical
points distribution theory. When the scene passes
through a point detector, a two-dimensional (2D) ran-
dom density field is produced. Considering a 2D ran-
dom density field, I�x; y�, whose size is M ×N, its
probability density function (pdf) can be expressed
through a Gaussian probability model. In studying
a density field’s structure, perturbations are used
usually, defined as

ε�x; y� � I�x; y� − I0
I0

; (1)

where I0 is the average. Designate the multiresolu-
tion analysis for the 2D square integral function
space, L2�R�, to be fV2

j gj∈Z
. Then only one scaling

function exists and corresponds to fV2
j gj∈Z

, where
the scaling function is φ�x; y� � φ�x�φ�y�. On the
basis of that there is one wavelet function ϕ�x� corre-
sponding to one-dimensional (1D) scaling function
φ�x�, the 2D generating wavelet functions ψ l�x; y�
can be decomposed into three parts in the separable
case:

ψ1�x; y� � φ�x�ϕ�y�;
ψ2�x; y� � ϕ�x�φ�y�;
ψ3�x; y� � ϕ�x�ϕ�y�: (2)

Consequently, the separable and orthonormal dis-
crete wavelet functions, ψ l

i;m; j;n�x; y�, can be derived
in the 2D space L2�R�.

ψ l
i;m; j;n�x; y� �

�
φi;m�x�φj;n�y�; l � 0
ψ l
i;m�x�ψ l

j;n�y�; l � 1; 2; 3 × i; j ≥ 0;

i; j;m; n are all integer;

(3)

ψ l
i;m�x� �

�
2i

M

�1 ∕ 2

ψ l

�
2i

M
x −m

�
;

ψ l
i;n�y� �

�
2i

N

�1 ∕ 2

ψ l

�
2i

N
y − n

�
: (4)

Equations (3) and (4) show that the wavelet functions
are families of functions that are generated by dilat-
ing the generating wavelet by a factor of �2i; 2 j�, and
by translating ψ l�x; y� by �m;n�. Furthermore, the
wavelet functions are orthogonal to both dilation
and translation.
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Therefore, a 2D signal with finite size can be bro-
ken down into a series of subchannels’ 2D signals
after the periodic extension:

ε�x; y� �
X∞
i; j�0

X∞
m;n�−∞

X3
l�0

wl
i; j�m;n�ψ l

i;m; j;n�x; y�: (5)

Here, wl
i; j�m;n�, namely the 2D discrete wavelet

coefficients, are the decomposition coefficients of
ε�x; y�, corresponding to the orthogonal basis
ψ l
i;m; j;n�x; y�. So combining with Eq. (3), the wavelet

coefficients can be derived as follows:

wl
i; j�m;n� �

X∞
x�−∞

X∞
y�−∞

ε�x; y�ψ l
i;m; j;n�x; y�; (6)

where w0 denotes the low-frequency components, w1

denotes the high-frequency components in horizontal
orientation, w2 denotes the high-frequency compo-
nents in vertical orientation, and w3 denotes the
high-frequency components in diagonal orientation.
The Parseval’s theorem relates the power for a distri-
bution to the discrete wavelet coefficients [18]; this
yields

1
MN

XM
x�1

XN
y�1

jε�x; y�j2 �
X∞
i; j�0

1
MN

X2i−1
m�0

X2 j−1

n�0

X3
l�0

jwl
i; j�m;n�j2:

(7)

Then we get the computation formula for the
wavelet power spectrum in scale �i; j� as follows:

Pi; j ≡
1

MN

X2i−1
m�0

X2 j−1

n�0

X3
l�0

jwl
i; j�m;n�j2: (8)

Taking the calibration images derived by one TDI
CCD prototype camera in the laboratory for example,
three selected images are decomposed by a 2D wave-
let in level of three for comparison, as shown in Fig. 1.
Here, the high-frequency coefficients are enlarged to
highlight.

In Figure 1, the three images’ imaging parameters
are the same, except for the focusing codes. In panel
(a), the edges of wavelet component images are clear,

and the transition is quick; in panel (b), the transi-
tion tends to fade; and in panel (c), the edges have
blurred. This characteristic just corresponds to the
image quality; therefore the wavelet components
can be used for image quality analysis.

Image motion mismatching and defocusing are
the two major factors that cause the blurred images
for the push-broom TDI CCD cameras. The confu-
sion in two blurs may result in wrong estimation
for the focus measure. Fortunately, their principles
of causing blurs are different [19–21]. The speed
deviation along the track, one of the image motion
mismatching velocity vectors, is most likely to oc-
cur. The speed deviation results in not only the
images’ stretching or squashing, but also the charge
added together no longer corresponding to the
same imaging target. So the image motion mis-
matching drops the modulation transfer function
(MTF) by

MTFmatch �
sin

�
π
2N

vc
vN

ΔvP
vP

�
π
2N

vc
vN

ΔvP
vP

; (9)

where N is the number of TDI stages, vc is the
characteristic frequency, which usually equals the
Nyquist frequency vN, and ΔvP ∕ vP is the velocity
resident error of the image motion matching. As
ΔvP ∕ vP is a vector with the direction along the
track, we can easily get that MTFmatch is the
MTF in the along-track direction. Thus, the image
motion mismatching affects the images’ sharpness
in the along-track direction as one low-pass filter,
but the sharpness in the across-track direction is
not be affected, as shown in Fig. 2 (the image mo-
tion mismatching image and its 2D DWT). The dif-
ference can be found in Fig. 2, especially by the
edges, where the vertical edges are sharp while
the horizontal edges get blunt.

The principle of defocusing is that all target points
through the optical system become diffusion spots in
the focal plane, affected by the point spread function
(PSF). The MTF of optical defocusing is analyzed in
Subsection 4.A. According to Eq. (17), the MTF of
defocusing is a function of two orthogonal variables
u and v. Thus, the MTF of defocusing is omnidirec-
tional in the 2D space, and defocusing performs

Fig. 1. 2D DWT for three images with different defocusing amount: (a) relative focusing code is 0; (b) relative focusing code is 30; and
(c) relative focusing code is 60.
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on images to be fuzzy in any direction, as shown in
Fig. 1(c), where the edges in all directions get
blurred. Through above analysis, we can draw a
conclusion that the changes of high-frequency
components across the track depend mainly on de-
focusing; however, the changes of high-frequency
components along the track are influenced by both
defocusing and image motion mismatching. So if
the high-frequency components only across the track
are obtained and applied, the impact of image motion
mismatching on the evaluation for defocusing can be
eliminated effectively. Hence, the evaluation accu-
racy can be improved as well. Thus, the power spec-
trum estimation formula in scale �i; j� becomes

Pi; j ≡
1

MN

X2i−1
m�0

X2 j−1

n�0

jw1
i; j�m;n�j2: (10)

3. Comparison of the DWT Spectrum to the FFT
Spectrum

Traditionally, the power spectrum is calculated by
the Fourier transform of the autocorrelation func-
tion. The Fourier expression coefficients for a density
field can be derived easily, as shown in Eq. (11), and
then the relation of the signal’s power and Fourier
coefficients can also be derived easily according to
the Parseval’s theorem, as Eq. (12):

F�u; v� � 1
MN

XM
x�1

XN
y�1

ε�x; y�e−2πiy v
Ne−2πix

u
M; (11)

1
MN

XM
x�1

XN
y�1

jε�x; y�j2 �
X∞
u�−∞

X∞
v�−∞

jF�u; v�j2: (12)

So the Fourier power spectrum density defines as

P�u; v� � jF�u; v�j2: (13)

For the convenience of comparing the power spec-
tra of different images, the 2D power spectrum is

converted to its logarithm and in one-dimension,
as follows:

P�ρ� � log
�

1

nρμ
2MN

Xπ
θ�−π

jF�ρ; θ�j2
�
; (14)

where F�ρ; θ� are the polar coordinates for F�u; v�,
ρ is frequency referred to the radial distance,
ρ �

�����������������
u2 � v2

p
∕

���������������������������������������
�M ∕ 2�2 � �N ∕ 2�2

p
, in units of cycles ∕

pixel, nρ is the total number of the points with radial
distance ρ, and μ2 denotes the DC power to eliminate
the influence of images’ brightness changing. The
conversion schematic diagram is shown in Fig. 3.
We take the image size M � N in the experiments.
As shown in Fig. 3, the 2D power spectra on the circle
are incomplete when the cycle’s radial distance ρ is
greater than 0.707, where ρ � 0.707 cycles ∕ pixel cor-
responds to the largest inscribed circle. Thus the
truncation brings a sharp transition at 0.707 cycles ∕
pixel in the one-dimensional (1D) power spectrum.

Figure 4 is one real remote sensing image; because
the focus measure rests on the comparison of the ad-
jacent images, we select its four adjacent subpictures
along the push-bloom direction for the analysis. Then
we get the power spectrum results, as shown in
Figs. 5(a) and 5(b), using the traditional FFT and
the proposed DWT spectrum estimator, respectively.

Figure 5 shows that the different scenes’ power
spectra estimated by two methods both keep invar-
iant well. However, compared with the FFT spectrum
estimator, the DWT power spectrum estimator per-
forms better in scene independence. Obviously, a
large river area is contained in subpicture 3. Conse-
quently, the FFT spectrum curve of subpicture 3 is
much lower than the other FFT spectrum curves
of the subpictures that contain abundant informa-
tion. Nevertheless, the DWT spectrum curves of all
subpictures keep a good invariance property. More-
over, the invariance of the DWT spectrum performs
better in the high frequency. Besides, by overcoming
the shortage of FFT in a single resolution, the DWT
is more suitable for the TDI CCD camera’s focus
measure.

Fig. 2. Image motion mismatching image and its 2D DWT.

u

v

Fig. 3. (Color online) Schematic diagram of 2D power spectrum
to 1D conversion. The 1D power spectrum is generated by aver-
aging the power contained within cycles of radial distance. The
radial distance ρ � 0.707 cycles ∕ pixel corresponds to the largest
inscribed circle of the 2D power spectrum.
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4. Focus Measure based on DWT Spectrum Estimator

A. Change of Power Spectrum Caused by Defocusing

The model of the imaging system is given as follows:

I�x; y� � f �x; y� ⊗ h�x; y�; (15)

where f �x; y� is the input image and h�x; y� is the PSF.
The MTF corresponding to defocusing is the FFT of

PSF. Here we assume all the other sections’ MTF to
be 1, and consider the brightness in the confusion cir-
cle is uniform from the geometrical optics. The PSF is
approximated by the 2D Gaussian function is

h�x; y� �
�
1 ∕ πR2; x2 � y2 ≤ R2

0; x2 � y2 > R2 : (16)

Fig. 4. (Color online) Image taken by some TDI CCD aeronautic camera.

Fig. 5. Normalized power spectra for the four subpictures in
Fig. 3: (a) FFT spectrum; (b) the proposed DWT spectrum.

Fig. 6. (Color online) Power spectra of focusing and defocusing
images. (a) FFT power spectra; (b) DWT spectra. The bold lines
in upside correspond to the four focusing subpictures, and the thin
lines in downside correspond to their defocusing images. The sharp
transitions at 0.707 cycles ∕ pixel are caused by the 2D power
spectra to 1D conversion.
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So the optical transfer function gets

H�u; v� � exp
�
−
1
2
ρ2�u; v�a2

�
: (17)

According to the above analysis, the PSF is almost
the same as one low-pass filter, and the cut-off fre-
quency changes with the defocusing amount. Thus,
the cut-off frequency gets higher as the focusing gets
more accurate.

According to the Eq. (15), the 1D power spectrum
of the output image gets to be

P�ρ�� 1

nρμ
2MN

Xπ
θ�−π

jT�F�f �x;y�⊗h�x;y���j2

� 1

nρμ
2MN

Xπ
θ�−π

jT�F�f �x;y��×F�h�x;y���j2

� 1

nρμ
2MN

Xπ
θ�−π

T�jF�u;v�j2�×T�jH�u;v�j2�: (18)

So for the same input image, if the defocusing gets
more serious, the output image will become fuzzier in
the space domain, and the high frequency will lose
more in the frequency domain. In order to validate
the change of the power spectrum caused by defocus-
ing, we derive the defocusing image from the image
in Fig. 4, and then their power spectra are analyzed,
as shown in Fig. 6. It shows that the changes of two
kinds of power spectra are similar; that is, defocusing
makes the high frequency lost. So we can take the
sum of the high frequency in power spectra to build
the focus measure function. And here we find the
foundation of the focus measure for TDI CCD space
cameras.

B. Focus Measure Function

As shown in Fig. 6, defocusing makes the high fre-
quency lost, while it almost has no effect on the
low frequency. So we select the sum of power spectra
(PSS) between 0.05 and 0.5 cycles ∕ pixel for the focus
measure function, as shown in Eq. (19):

Q�1�
PSS �

X0.5
ρ�0.05

Pi; j: (19)

After analyzing the defocusing model, we can draw
a conclusion that if the weight of high frequency in-
creases and the weight of low frequency decreases,
the focus measure function will be more accurate
and sensitive. So the frequency is chosen as the
weighting factor in this paper, and the focus measure
function is improved as follows:

Q�2�
PSS �

X0.5
ρ�0.05

ρPi; j: (20)

5. Experiment Results and Analysis

To validate the proposed algorithm, we choose
images with different scenes as samples, such as
the 25 different subpictures shown in Fig. 7. To simu-
late the real imaging of TDI CCD space cameras
adequately, the defocusing amounts are set to be dif-
ferent for each subpicture. Here we suppose that the
AF encoder position corresponding to the original
image is zero. The step is set as 0.5, 1, 1.5, 2, and
3, respectively; then a series of images with different
defocusing amounts and diverse scenes is obtained.
The evaluation results for these images by two focus
measures are shown in Fig. 8 and Table 1.

In Table 1, the error number is the number of
the points that don’t satisfy with monotonicity. Here
we get the slopes of the total 25 data by the differ-
ence operator 1. So the data points located in the left
side of the center with slopes no greater than 0 and
those located in the right side of the center with
slopes no less than 0 can be considered as error. How-
ever, there are some consecutive error points that
even meet the above monotonicity. So in order to re-
duce the missing rate for the error points, the result
is corrected using the difference operator 2, and we
get the final count to be error number. Error ratio is
the result of error number divided by total number.

The results show that the focus measure based on
the DWT spectrum meets the principle of monotoni-
city well, and it precedes the FFT spectrum-based
method. Compared to the FFT spectrum-based focus
measure, the difference of the values calculated by
the DWT spectrum-based focus measure gets larger
in the same state, so the DWT spectrum-based focus
measure meets the principle of high sensitivity.
The average error ratio decreases from the FFT
spectrum-based focus measure’s 0.4 to 0.112, so the
DWT spectrum-based focus measure meets the prin-
ciple of high accuracy. In addition, comparing the

Fig. 7. Experiment samples.
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curves shown in Fig. 8, we can know that the DWT
spectrum-based measure curves are more saturated.
Thus, the proposed focus measure based on the DWT
spectrum is more efficient and better for TDI CCD
space cameras.

Then tests are implemented on ground experi-
ments, for one TDI CCD prototype camera. To com-
pare two focus measures’ performances, 80 random
images are gathered in every setting relative focus-
ing code respectively, and the standard deviation
(STD) of 80 images’ power spectra are calculated,
as shown in Table 2.

In Table 2, STD_DWT presents the STD of the
evaluation results using the DWT spectrum-based
method. Likewise, STD_FFT presents the STD of
the evaluation results using the FFT spectrum-based
method. The results show that an STD of 0.161 can
be obtained with the DWT power spectrum-based
method, while that of the FFT spectrum-based mea-
sure is as high as 0.600. Obviously, the proposed
focus measure performs better in the stability, since
it is less sensitive to the scene changing. In conclu-
sion, the new algorithm is more suitable for TDI
CCD space cameras than the old FFT solution.

6. Conclusion

The autofocusing algorithm in this work is proposed
for the real-time autofocusing needs of TDI CCD
space cameras. Compared to other conventional
focus measures, the FFT power spectrum-based
method has achieved preliminary results, which is
relatively more robust for the images with real-time
changing scenes caused by TDI CCD cameras. How-
ever, the FFT spectrum-based focus measure cannot
separate the defocusing blur from the image motion
mismatching blur, and it has the noise-sensitive and
other defects. The proposed algorithm improves the
FFT spectrum-based method. Firstly, the formula of
wavelet power spectrum is derived from the 2D DWT
and the Parseval’s theorem. Then the blurred images
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Fig. 8. Comparison of two methods’ definition evaluation results
for images with different scenes and defocusing amounts.

Table 1. Error Ratio for Two Methods

The DWT-Based Method The FFT-Based Method

Step Error Number Error Ratio Error Number Error Ratio

0.5 7 0.28 12 0.48
1 3 0.12 12 0.48
1.5 0 0 9 0.36
2 1 0.04 8 0.32
3 3 0.12 9 0.36

Table 2. STD of Two Focus Measures

Relative Focusing Code STD_DWT STD_FFT

2 0.16100 0.60485
25 0.16100 0.60485
50 0.16100 0.60485
75 0.16181 0.60323
100 0.16160 0.59948
150 0.16137 0.59573
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caused by image motion mismatching are analyzed
with DWT, and the directional power spectrum esti-
mator is obtained afterwards, which can effectively
separate the effect of image motion mismatching
on the defocusing judgment. Finally, in order to
further improve the algorithm, the weighted sum
of power spectrum between 0.05 and 0.5 cycles ∕
pixel is selected for focus measure. The experimental
results indicate that the average error ratio can drop
to 0.112, while that of the prevalent algorithm based
on FFT spectrum is 0.4. Besides, the new algorithm
can decrease the instability from 0.60 to 0.161. The
focus measure in this work has been proved to have
the characteristics of good monotonicity, high sensi-
tivity, and accuracy, and can meet the autofocusing
requirements of TDI CCD space cameras.
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