
Mathematical construction and perturbation analysis
of Zernike discrete orthogonal points

Zhenguang Shi,* Yongxin Sui, Zhenyu Liu, Ji Peng, and Huaijiang Yang
State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics,

Chinese Academy of Sciences, Changchun, Jilin 130033, China

*Corresponding author: shizg@ciomp.ac.cn

Received 20 March 2012; revised 28 April 2012; accepted 29 April 2012;
posted 30 April 2012 (Doc. ID 165073); published 18 June 2012

Zernike functions are orthogonal within the unit circle, but they are not over the discrete points such as
CCD arrays or finite element grids. This will result in reconstruction errors for loss of orthogonality. By
using roots of Legendre polynomials, a set of points within the unit circle can be constructed so that
Zernike functions over the set are discretely orthogonal. Besides that, the location tolerances of the points
are studied by perturbation analysis, and the requirements of the positioning precision are not very
strict. Computer simulations show that this approach provides a very accurate wavefront reconstruction
with the proposed sampling set. © 2012 Optical Society of America
OCIS codes: 080.1005, 010.7350, 220.4840.

1. Introduction

In optical testing, Zernike functions have been
widely used to describe optical surfaces or wave-
fronts, since they are made up of polynomial terms
that are of the same form as a Seidel aberration [1,2].
The surface aberrations or wavefronts of an optical
system are recorded with a uniform sampling array
like a CCD and then recovered with certain algo-
rithms, such as phase shifting algorithms [3,4] in
modern digital phase shifting interferometers. In op-
tomechanical analysis, predicting optical perfor-
mance under the actual operational environment
of an optical system often requires importing finite
element computed surface displacements into the
optical model such as the Zernike description of
surface undulation [5,6]. The finite element meshing
for optics is carried out with certain types of grid
partitioning.

In the preceding cases, Zernike polynomials’ ex-
pansion coefficients are all required to calculate
from the discrete data over some types of sampling
points. As is known to us, Zernike polynomials are

orthogonal within the unit circle, but they are not
the case over the commonly used discrete points
unless they are uniformly distributed and dense en-
ough [7]. Fortunately, by studying the mathematical
properties of Zernike functions, Pap and Schipp have
designed a sampling fashion of the unit circle elabo-
rately, which ensures that the Zernike polynomials
are discrete orthogonal over the constructed set
mathematically [8], which can be used to deal with
the preceding engineering problem. But they do
not analyze the locating tolerance of sampling points
since the actual sampling points will not coincide
with the ideal ones exactly in practice, such as
CCD equidistant sampling or mesh points in finite
element analysis. The locating errors will be studied
by perturbation analysis in our work.

The paper is organized as follows: First the math-
ematical construction method of the discrete sam-
pling points within the unit circle is introduced in
detail in Section 2. And then in Section 3 the pertur-
bation analysis about the location errors of the actual
sampling points is studied. Computer simulations in
Section 4 are to validate the proposed sampling
method experimentally. The conclusion about the
possible application of the proposed method is sum-
marized in Section 5.
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2. Mathematical Construction

Zernike functions are variable separable in the polar
coordinates
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the orthogonality relation for radial polynomials is
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and the azimuthal polynomials are orthogonal
complex triangle functions satisfying
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That is to say that Zernike functions are orthogonal
within the unit circle
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The mathematical construction method of the
discrete sampling points within the unit circle is
introduced as follows [8]: Let us denote the roots
of Legendre polynomials PN�x� of order N by
λk ∈ �−1; 1�, k ∈ 1;…; N. Constructing the Lagrange
interpolation fundamental polynomials
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and calculating the corresponding integral numbers
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then for every polynomial f �x� of order less than 2N,
the following relation is satisfied:

Z
1

−1
f �x�dx �

XN
k�1

f �λk�Ak: (7)

So for Zernike radial polynomials, define
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And for Zernike azimuthal functions, because of their
orthogonality, just define enough uniform sampling
points over the circle

θj �
2πj

4N � 1
; j � 0;…; 4N; (11)

and then azimuthal functions are orthogonal over
these points.

In conclusion, the set of nodal points can be
constructed as follows:

X � fzjk � �ρk; θj�; k � 1;…; N; j � 0;…; 4Ng: (12)

Sort double-index Zernike polynomials by some
ordering type p � p�m;n� such as the 36-term
Fringe Zernike polynomials commonly used in opti-
cal testing. Then if the orthogonality condition in
Eq. (9) is founded, the coupling coefficient of the pth
and p0th Zernike functions over the discrete sampling
points is
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So the Gram matrix G � �Gpp0 � formed by the cou-
pling coefficients will be a unity matrix. See Fig. 1(b)
for its deviations from the unity matrix I (called
“orthogonality deviations” from now on). The ortho-
gonality deviations of the 10−13 level imply that the
Grammatrix is certain to be a unity matrix except for
computer precision.

There is also an improvement about the number
of points in the azimuthal direction. If Eq. (9) is
founded, then mmax � N − 1 and nmax � 2�N − 1�.
So to ensure the orthogonality of azimuthal func-
tions, just 2mmax � 1 � 2N − 1 sampling points are
sufficient. The azimuthal points are
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θj �
2πj

2N − 1
; j � 0;…; 2N − 2: (14)

The comparison between the two sampling patterns
and orthogonality deviations are illuminated in
Fig. 1. One can see that the 2N − 1 sampling (66
points in total for N � 6) is just enough to guarantee
the orthogonality of Zernike polynomials without the
use of the 4N � 1 sampling (150 points in total
for N � 6).

Then the Zernike reconstruction coefficients of
wavefront T�ρ; θ� over the constructed discrete
sampling points

Cmn �
XN
k�1

XN 0
−1

j�0

T�ρk; θj�Zm
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Ak

2N 0

× �N 0 � 2N − 1 & 4N � 1� (15)

will be absolutely accurate, because Zernike terms do
not correlate with each other at all for their complete
orthogonality.

3. Perturbation Analysis

As we have said before, the actual sampling points
cannot coincide exactly with the mathematically con-
structed ideal ones in practice. In such cases, the
orthogonality of Zernike polynomials in Eq. (13) is
not founded exactly and will be perturbed slightly.
This situation is analyzed as follows: without loss
of generality, suppose that only a tiny perturbation
with λ1 changed to be λ01 � λ1 �Δλ1. Then the
Lagrange interpolation fundamental polynomials
in Eq. (5) will be changed to
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where
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; (17)

and the integral coefficients in Eq. (6) will be
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so the discrete sum in Eq. (7) will be
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Then the perturbation quantity of the discrete
sum is
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One can see that for Zernike radial functions, when
there is small perturbation of actual sampling points
about the mathematically constructed ideal ones, the
coupling coefficients are also perturbed very slightly.

Fig. 1. (Color online) Sampling patterns and orthogonality devia-
tions comparisons for 4N � 1 and 2N − 1 azimuthal points.
(a) 4N � 1 azimuthal sampling, (b) orthogonality deviations of
4N � 1 sampling, (c) 2N − 1 azimuthal sampling, and (d) orthogon-
ality deviations of 2N − 1 sampling.
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But as pointed out in Eq. (21), the perturbation quan-
tity of Zernike coefficient satisfies

ΔCmn � O�Δλ1��Δλ1 � λ01 − λ1 → 0�: (22)

That is to say that it is just an infinitesimal of the
same order asΔλ1 in a first-order approximation that
can almost be negligible. The analogous conclusion
can be achieved for Zernike azimuthal functions
too, which is that the perturbation quantity is also
an infinitesimal of the same order as Δθ1. So as long
as the actual sampling points do not deviate from the
ideal ones largely, the reconstruction coefficients of
Zernike polynomials will not deviate from the real
ones seriously.

4. Computer Simulations

To demonstrate the preceding viewpoint experimen-
tally, one can perturb the constructed ideal points
randomly within a tiny quantity via computer simu-
lations. Then the Gram matrix G � �Gpp0 � in Eq. (13)
is recalculated to compare with the ideal one, and the
orthogonality deviations betweenG and I are plotted
for observation.

For the forward 36-term Fringe Zernike polyno-
mials, mmax � 5 and nmax � 10. So to ensure their
orthogonality, only N � 6 radial points and 2N − 1 �
11 azimuthal points (total of 66 points) are required.
See Figs. 1(c) and 1(d) for the sampling patterns and
corresponding orthogonality deviations.

The first result is about the radial coordinate per-
turbation. The roots of Legendre polynomials are ta-
ken four decimal places; that is to say that the errors
of roots lie in the �−5; 5� × 10−4 region. The orthogon-
ality deviations resulting from the tiny perturbation
are illustrated in Fig. 2(b). Then the azimuthal coor-
dinates are perturbed by a random variable subject
to uniform distribution, which lies in �−0.01; 0.01�°,
that is, the �−1.75; 1.75� × 10−4 rad. The correspond-
ing orthogonality deviations are shown in
Fig. 2(c). At last the perturbations in both directions
are studied together, and the orthogonality devia-
tions are shown in Fig. 2(d), where the radial and
azimuthal perturbation quantities are as much as
that used in Fig. 2(b) and in Fig. 2(c), respectively.
It is seen that the differences of all the coupling
coefficients are not more than the 10−3 level, which
supports our argument in Eq. (21) that the perturba-
tion quantities of the coupling coefficients are just
mathematical infinitesimals of the same order as
the perturbation of coordinates that are of the
10−4 level.

It is shown below that the supposed pertur-
bation quantities of the radial and azimuthal direc-
tions are reasonable physically. For N � 6 radial
points, the discrete radial positions are ρ ≈

�0.1837;0.4116;0.6170;0.7870;0.9114;0.9830�, res-
pectively. So given a 4-in. mirror as an example,
the strictest requirement of positioning precision
is at the first radial point ρ1, where the require-
ments are 50 mm× 0.1837 × 5 × 10−4 � 4.6 μm and

50 mm × 0.1837 × 1.75 × 10−4 � 1.6 μm, respectively,
in the two directions. In the precise optomechanical
analysis, the quantities of displacements of finite ele-
ment mesh grids under a real operational environ-
ment will be significantly less than the preceding
requirements. Also in the low frequency formmetrol-
ogy, the perturbation quantities are far less than the
physical size per pixel. That is to say that the sup-
posed perturbation quantities lie in the appropriate
regions certainly and the preceding results are true
practically.

To demonstrate the reconstruction capability of
Zernike coefficients using the proposed sampling
method, a surface made up of the forward 36-term
Fringe Zernike polynomials whose coefficients are
all 1 nm are constructed. The constructed surface is
shown in Fig. 3(a). Then the Zernike coefficients are
reconstructed using Eq. (15) with the perturbation

Fig. 2. (Color online) Sampling patterns and orthogonality devia-
tion comparisons for radial and azimuthal perturbation about
ideal points. (a) 2N − 1 sampling patterns, (b) deviations of 10−4

levels in radial direction, (c) deviations of 10−4 levels in azimuthal
direction, and (d) deviations of 10−4 levels in both directions.

Fig. 3. (Color online) Zernike surface and reconstruction errors.
(a) Constructed Zernike surface, and (b) differences of recon-
structed and original coefficients.
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points used in Fig. 2(d). The differences of the recon-
structed and original 36-term Fringe Zernike coeffi-
cients are shown in Fig. 3(b).

One can see that the errors of Zernike reconstruc-
tion coefficients are of the 10−4 level and they are
very small compared to the original coefficients that
are all 1 nm. That is to say that the reconstruction
relative errors are only about −4 orders of magni-
tude, which proves that the proposed sampling
method for reconstruction of Zernike coefficients is
very accurate. Compared to the conventional least
squares fitting method, the proposed method is also
more effective because only a few multiplication and
addition operations are needed. Besides that, a line-
ar equation group like Ax � b is needed to solve the
least squares fitting method. Usually the condition
number of the matrix A is far more than 1; that is
to say that the method is very sensitive to the pertur-
bation of the measured or finite element analysis
analyzed data.

5. Conclusion

In summary, a mathematically constructed sampling
method that ensures the orthogonality of Zernike
polynomials over the discrete points within the unit
circle was introduced. And the constructed discrete
points can assure the correctness of Zernike recon-
struction coefficients. The proposed discretization

meshes of the unit circle can be further exploited
in optomechanical interface conversion software
such as SigFit [6] or in wavefront measuring instru-
ments like digital interferometers, where Zernike
functions are commonly used to describe wavefronts
or surface displacements.
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