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Developed method of excess fractions for calibrating the
effective optical thickness of a Fabry-Perot etalon
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A general method of calculating the integral-order number of interference is developed, completely without a trial
method. The developed method of excess fractions is extended to the calibration of the effective optical thickness
of a Fabry-Perot 6talon with the disperion of the refractive index and the phase shift on reflection. Several useful
methods of calibration are provided and illustrated by examples. The condition under which the phase shift can be
neglected is given for calculating the correct integral-order difference between wavelengths. A possible method of
precise measurement of the dispersive phase shift is given. It is pointed out that exact knowledge of the integral
order is not even necessary and that the phase shift can thus essentially be neglected for a precise measurement of
the wavelength as long as the effective optical thickness is calibrated as the product of the fringe order of
interference and the standard wavelength.

INTRODUCTION

In the application of a Fabry-Perot 6talon to the comparison
and measurement of wavelengths, precise calibration of the
effective optical thickness of the talon is of fundamental
importance. In practice, one often uses the 6talon made by
a solid glass plate or a fused quartz plate with metallic or
dielectric reflecting films or those made by two reflecting
plates separated by a air gap; hence the calibration of the
6talons is complicated by the dispersion of the refractive
index and the phase shift on reflection. The traditional
methods of exact fractions' and excess fractions 2 that can be
used to determine the integral orders of interference are
inconvenient for a systematic study of these problems be-
cause of their trial feature. The modified method of excess
fractions 3 provides a new means of studying these problems.
However, it was used previously only for studying the case in
which the phase shift is neglected in vacuum, and a method
was not developed for selecting a single z value for a combi-
nation of wavelengths satisfying the requirement that 1 <
14(1/X2 - 1/XOAd'I • N (integer N >1); that is, a comparison
was still needed for finding the correct integral order.

In this paper, the modified method of excess fractions is
developed further. A new technique of calculating the inte-
gral orders is given for a general combination of wavelengths.
The developed method of excess fractions is extended to the
calibration of the effective optical thickness of a Fabry-
Perot 6talon with the dispersion of the refractive index and
the phase shift on reflection. Several useful methods of
calibration are provided and illustrated by examples. It is
pointed out that exact knowledge of the integral order is not
even necessary and that the phase shift can thus essentially
be neglected for a precise measurement of wavelength as
long as the requirements are satisfied.

GENERAL OPERATION

For normal incidence, the path difference between succes-
sive rays emerging from a Fabry-Perot 6talon is

(m + e)X = 2nd + ox,
Or

(1)

where m is the integral order of the innermost bright fringe, e
is the fractional order at the center, X is the wavelength, n is
the refractive index of the talon, d is the talon thickness,
and 'k is the phase shift on internal reflection. For the sake
of convenience Eq. (1) may be rewritten in the following
forms:

(m + e)X = 2nd(1 + a)
= 2n(X)d

= 2nd(X), (2)

where

27rnd

n(X) = n(l + a) = n +
27rd

(3)

and

d() = d( + a) = d +
27rn

For the sake of simplicity 10I may be considered to be less
than 7r.4 For the conditions under consideration, d is so
large and X is so small that a << 1, n >> OX/27rd, and d >> X/
27rn. Taking the derivative of d(X) with respect to X yields

Ad(X) = (2 n) = C (4)
AX AX

It is well known that metallic reflecting films, such as Al and
Ag, produce a phase shift that varies so that the product OX
is nearly constant 5 ; i.e., Co/ is almost equal to zero. For
dielectric multilayers, however, the product AX may vary
much more rapidly with wavelength than does that for met-
als. The phenomenon must be reckoned with in the calibra-
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tion of the effective optical thickness of the 6talon. Under
the condition of linear approximation, which is in good
agreement with experiment,6,7 Co is almost constant. If 00 =
0 when X = X0, then from the integral of Eq. (4) we can get

ox = 2nC,,(X - X0). (5)

Let X, and Xu be the known precise wavelengths; then from
Eq. (2) we have

(m + e) = (mu + eu) n(X,)X'

be (I X)A,
4d'An

An 

= 2nu' 1 - S AC,
XU

(8b)

where the relations AX << X << Ad << d', a,' << 1, n,' = nu', Ans
= And = An, and Ae, = Aed = Ae have been used. An
approximate value of the effective optical thickness of the
6talon for X, is

(6)

where m and mu are the integral orders of the first bright
rings, es and eu are the fractional orders at the center, and
n(X,) and n(X,) are the effective refractive indexes corre-
sponding to X and X. For each wavelength, the fractional
order may be obtained from measurements of the bright ring
diameters. When n(X,) and n(X,) are not precise enough, we
may consider n(X,)Xu/n(X,) an effective unknown wave-
length. Therefore the above-described problem is essential-
ly a matter of comparison of the unknown wavelength with
the standard wavelength. The integers m, and mu can be
found by the developed method of excess fractions as fol-
lows.

If we put d = d' + Ad', ni = ni' + Ani', ej = e' + Aei', Co =
C,' + AC,', Xo = Xo' + AX', and ku = Xu' + AXu', where the
subscript i = s,u and where

n(X8 )
Xu = n(Xs) Xu, Xu = n'(X,) Cu,

n'(Xu)

AX An'(X,) An'(Xu) 1
[V__n'(X,) -n'(Xu) 1 Xu,

then from Eq. (6) we have

mu + eu' = (ms + e') XS + a,
XU

(7)

where

AXu' X83 =-(mu + e) + A 'est-idea . (8)

By using Eqs. (3) and (5) and (mu + eu) 2n'(X,)d'/Xu, we
can write Eq. (8) as

3 be + n + ace

where

nu'[1 + C'(Xu - Xo)/d/]Xs ,_ ,
n8'[1 + C'(Xs - e) ' v Aeu'

an
2d'(n,'An' - n'An,1) [1 + Co'(Xu - o)/d/]

(8a)

n'(X 8,)d' ± [n'(Xs)d ], (9)

where

n'(X,)d' = ns'd' + n,'C,'(X. -, o)

and

A[n'(X.8 )d'] = And' + ns'Ad + 1Ks - X0'I(AnICj + AC,,n,')

+ nj'IC,'IAX0.

According to the modified method of excess fractions, 3 for
example, we take the integer

ms' = Int.P(2n'(Xs)d'+ [n'(s)d']1) (10)

as an approximate value of m, where Int.P( ) denotes the
integral part of the expression within the parentheses, and
we may write

Ms = ms +x,

where sx is an unknown integer and

4A[n'(XAs)d'] =s,,_ X<0

An approximate order for Xu is calculated as

m ' + eu' = (ms' + e,) Xs.
XU

(11)

(12)

(13)

From Eqs. (7), (11), and (13) we can obtain the following
relation:

mu + eu' = (mu + x-z) + [eu + z + x(., 1)] + a,

(14)

where z is an integer that can be selected according to the
specific rules (see below).

For simplicity, we write

Mu

nu'[1 + C;(,u - X)/d]X s 1.

n,'[1 + Co'(Xs - ol)ld\u (15)

If the combination of Xs and Xu satisfies the requirement that

and

2n -Xs d'ACO' - CO/'Ad' '+d C'X C- 2xo
q) u ( X,, d' + C(X -x0/)

If we express the initial approximate quantities in terms of
the uncertainty as d' Jr- Ad, ni' + Ani, ei' i Aei, Cp' i ACp, and
X0' L AX0, we may estimate the uncertainty of 6 as

(16)IAuS sx_1 1,

then from Eq. (14) we make

x = Intreu - -)

Aus 2

(17)

where Int( ) denotes the integer nearest the value of the
expression in parentheses, and the value of z may be selected
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according to the rules given in Ref. 3. From Eq. (14) we
obtain

mu = mu' + Sx - z. (18)

From Eqs. (14) and (8), we may see that the value of sx found
by Eq. (17) has an error

Asx = = AXe + Ax, + Ax , (19)

where

Obviously, under condition (21), the correct Ams,> can be
obtained by using Eq. (20). Because Am always satisfies the
requirement of relation (16), the single z can be chosen.

We know from Eqs. (19a) that, when Axe < 0.5 and Ax, +
Axx,> < 0.5, AUS may not satisfy condition (16) but it can
satisfy the following requirement:

AXe = e

Aus
Ax, = -,

Au'
AX0 = -.

Using Eq. (8b) we may estimate the uncertainty of x found
by Eq. (17) as follows:

AXe IAs(1 + Xs ) 4d'An
XulAusl

Ax0, = 2n'AC 1,, (19a)

where the relation Il - Xs/Xul A AUsI has been used.
The value of sx found by Eq. (17) is correct, provided that

A 8x < 0.5. Thus the correct values of mi and mu can be
found by Eqs. (11) and (18). If Axe < 0.5, then the error of sx
introduced by the fractional-order errors in the calculation
of Eq. (17) will be eliminated. Hence the requirement that
A sx < 0.5 can be relaxed to that of Axe < 0.5 and Axn + Axe <
0.5. According to the requirements of Axe < 0.5 and Axn +
Axo < 0.5, from Eq. (19a) we can get

IAusI > Ae = 2e(1 + )

and

lAusl> Am = 4d'An 1b
U no (0.5 - 2nu'AC) (19b)

If the requirements that AXe < 0.5 and Axn + Axp < 0.5 are
not satisfied, then the value of sx found by Eq. (17) will have
an error; however, the integral-order difference Ams, ob-
tained by subtracting mu of Eq. (18) from mi of Eq. (11) can
be correct, and we have

Am,,, =iMs -imu = Ms -m' + Z, (20)

provided that Am8,u can be determined unambiguously. In
fact, from Eq. (2) we can obtain

Am,u = 2d n(X) n(X + eu - eS,
LXs Xu

where Am8,u can be determined unambiguously if its uncer-
tainty is less than 0.5. This implies that

2Ad[ s) - ( +2d'[ An(Xs) An(X,)]
2~d[ X, X A- + [d XS Xu 

+ Aeu - Ae = I (sxm + 2Ae,')Au8 - < 0.5;

hence we get

(Isxml + 2Ae)IAusl + 2131 < 1,

1 < IA xmI N (22)

where N is an integer and N > 1. Under this condition, the
N different values of 8x satisfying the requirement that sxI <
1sxmI can be obtained from Eq. (17) for the N possible values
of z. How will we select the single z corresponding to the
correct sx? For this purpose we may take the wavelengths
X, X2 , .. . , Xp between X and Xu and make each combination
of the adjacent wavelengths satisfy condition (21); thus the
correct Ams,1, Ai, 2, ... , Amp, can be found by using Eq.
(20). We can then add them together to obtain the correct
AIms, between X and Xu as

AM,,u = Am8,1 + Am1,2 + AiM2,3 + .. . + Ampu. (23)

By substituting the obtained Ams,U into the equation [which
was obtained from Eq. (20)]

(24)

we can find the correct z. By substituting the obtained z
into Eq. (17), we can find the correct sx, provided that Au-
satisfies the requirements that Axe < 0.5 and Axn + Ax1, <
0.5, i.e., relation (19b). After the correct sx is obtained, the
correct mi and m, can be found from Eqs. (11) and (18).
Finally,'the effective optical thickness n(X)d can be obtained
from Eq. (2) as the product of the order of interference and
the standard wavelength.

It can be seen from Eqs. (19a) that the values of Axe and
Axn are inversely proportional to Aus and that Ax1, is practi-
cally independent of Aus; moreover, Axe is dependent on only
Ae, Axn is dependent only on An, and Ax1, is dependent only
on AC1 in the light of uncertainty. Therefore the integral-
order errors introduced by the fractional-order error, the
refractive-index error, and the phase-shift error can be dis-
cussed separately. Practically, under the condition that the
phase shift of reflection be neglected, we may first find the
integral order m" according to the requirements of Axe < 0.5
and Axn < 0.5. We then find the integral-order contribution
m1 of the phase shift with the known C1'. In fact, neglecting
the phase shift implies that ' = 0, i.e., that Co' = 0 and AC1 =
C, ; from Eqs. (19a) we obtain Ax1, =o = 2nu'Co, and can unam-
biguously determine that

M1 = Int(2nj'C 1,'),

provided that the uncertainty of the initial Co' is

AC1 < 1 [0.5 - Int(Ax0=0) - Axo=01].
2n'

Hence we obtain the correct integral order,

(25)

(25a)

m = m" + MOn,. (26)

i.e.,

Aus < Am =I 1- 2Ae
1sx. + 2\e

(21)
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This is a practical method that has several advantages over
the aforementioned general method. First, the calculation
by the practical method is simpler. Second, the require-
ments for the errors of the refractive index and the phase
shift can be relaxed for determining the correct m for the
following reason. In the general method the errors of the
refractive index and the phase shift are taken together into
account, and Axe < 0.5 and Ax, + Ax1, < 0.5 must be satisfied
for the correct m to be found, but the practical method
requires only that AXe < 0.5 and Ax, < 0.5 and that relation
(25a) hold. It should be pointed out that the proper inter-
vals of wavelengths must still be chosen by relation (21).

It should be noted that even if the phase shift is neglected
the requirements for determining the correct m often are not
satisfied because of the larger values of d, Ad, An, and AC1, or
the smaller range of usable wavelengths that occurs in a
practical calibration. Hence we can obtain only an approxi-
mate integral order m"' by Eq. (17), and we may write

m = m"' + Am, (27)

where Aim is the integral-order error of m"', which might
contain the errors introduced by Ae and An and by neglect-
ing the phase shift. Now we may obtain the assumed optical
thickness

(i"' + e)X = 2nd"'(X). (28)

Using Eqs. (27) and (2), we can obtain

d "'(X) = d(X) - AmX
2n

hence

Ad"'(X) C - Am + AmX An.
AX - 1 2n 2n 2 AX

In consideration of the dimension of dispersion of the refrac-
tive index in the practical materials, the last term can be
neglected; thus we have

C4,
1 "1 = C1, - Ain

i.e.,

Aim = Int[2n(C 1, - C1, '11)]. (29)

The correct value of Am can be determined by Eq. (29),
provided that the error of calculating Am is less than 0.5.
This implies that

AC1, + AC1,
1P < 4 (30)

It should be pointed out that the value of Cow can be
obtained by experiment. In fact, once an approximate m"'
is determined, we have

d"'(X) = (m' + e)XI
2n'

(31)

where n' is the initial approximate value of the refractive
index. The variation of the obtained d'(X) can be fitted
well to a first-order polynomial,

1

d '. (X) = E djXj,
j=0

(32)
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where the coefficients d can be obtained from a least-
squares fit. The coefficient d of the first-order term is
simply C,*', i.e., 

Co, "' = d 1.

This method of finding the integral orders m from an ap-
proximate m' is called the correctional method.

Clearly, if the obtained integral orders are correct, i.e., if
Am = 0, then we have C, = d; hence this is a possible
method of precisely measuring Ca, .

NUMERICAL EXAMPLES

In order to show the manner of operation of the present
method, we shall use a numerical example. Let us assume
that the correct mi and es for the known wavelengths Xi are as
shown in Table 1. These data are obtained from Eqs. (1)
and (5) under the following assumption. For a given 6talon,
the precise value of the 6talon thickness is d = 2.129374582
mm, the precise refractive indices ni are given in Table 1, the
dielectric multilayer films have a linear phase-shift range
between 0.54 and 0.66 ,m, X0 = 0.59791304 gm, and C , =
-0.6454725525.

Our task is to find the correct integral orders mi with the
developed method of excess fractions according to initial
approximate values and then to calibrate the effective opti-
cal thickness of the given 6talon. For the purpose of specifi-
cation we shall describe several useful methods as follows.

The General Method
The errors of the refractive index and the phase shift are
considered together in the general method.

Consider an approximate value of the 6talon thickness d'
+ Ad = 2.131 + 0.005 mm; the measured values of ei' and ni'
are given in Table 2, An = 5 X 10-6, Ae = 0.01, C4,' + ACT =
-0.62 + 0.03,\Xo' + AX0 = 0.5979 + 10-4 Am, and the spectral
range of calibration is from 0.54811314 to 0.65213641 Am.

First, since we must determine the correct z and Am8,, we
use condition (21) to choose the proper intervals of wave-
lengths in the given spectral range of calibration.

Let X, = X = 0.54811314 pm; from expression (9) we
obtain n'(X,)d' = n'(XI)d' = 3111.275232 pm and A[n'(X,)d']
= A[n'(Xi)d'] = 7.312856316 ,m; from relation (12), lxml =

Table 1. Correct Orders of Interference
the Known Wavelengths

m; and el for

i xi(A) ni mi ei

1 5481.1314 1.459990847 11344 0.06056
2 5561.4231 1.459655796 11177 0.69048
3 5641.6431 1.459334149 11016 0.29712
4 5721.6534 1.459025605 10859 0.92480
5 5801.2346 1.458730140 10708 0.75372
6 5881.3471 1.458443537 10560 0.78394
7 5961.3796 1.458167449 10417 0.00606
8 6041.3215 1.457901292 10277 0.26169
9 6121.1367 1.457644608 10141 0.44322

10 6201.0134 1.457396274 10009 0.07919
11 6281.1012 1.457155394 9879 0.800237
12 6361.0744 1.456922521 9754 0.005916
13 6441.1166 1.456696698 9631 0.278791
14 6521.3641 1.456477186 9511 0.306149
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Table 2. Measured e' and n.' Values for the Known
Wavelengths

i Xi(A) nil ei,

1 5481.1314 1.459986 0.06
2 5561.4231 1.459658 0.69
3 5641.6431 1.459332 0.29
4 5721.6534 1.459029 0.93
5 5801.2346 1.458726 0.75
6 5881.3471 1.458442 0.79
7 5961.3796 1.458169 0.01
8 6041.3215 1.457901 0.27
9 6121.1367 1.457642 0.44

10 6201.0134 1.457399 0.07
11 6281.1012 1.457153 0.80
12 6361.0744 1.456924 0.01
13 6441.1166 1.456693 0.28
14 6521.3641 1.456482 0.31

11 XmI =

11379.
53.37; from Eq. (10), m,' = ml' = Int(11379.359) =

If Xu = 2 = 0.55614231,pm is chosen, then from Eq. (15)
we obtain AU = A 2 = -0.014660976; from Eqs. (8a) and
(8b), 3 = 8e + n + 31, = 0.0199 + 0.0766 + 0.0013 = 0.0978;
from relation (21), Am = 0.0151. Now, IA2 - Xml = 0.78 < 1,
IA211 = 0.014660976 < Am; obviously, conditions (16) and
(21) have been satisfied. From Eqs. (13) and (15) we have

miu' + en" = (m,' + es')(1 + A,`), (13a)

and we may obtain mi,' = M2 ' = 11212 and e" = e 2 = 0.232.
According to the selection rules of z (see Ref. 3), A 2

1
- Xm >

0, e' = e2 ' = 0.69 > e" = e 2" = 0.232, thus we select z = 0.
From Eq. (20) we obtain Am,,, = Am1,2 = 11379 - 11212 + 0

- 167.
In a similar manner we can obtain Am2, = 161 for the

combination of X, = 2 and ,, = X3 = 0.56416431 pm; Am =
Am13,14 = 120 for X, = X13 = 0.64411166 pm and X = X14 =

0.65213641 Am, as shown in Table 3. The integral-order
differences between the nonadjacent wavlengths can be ob-
tained by using Eq. (23).

Second, to find the correct sx by Eq. (17), i.e., to meet the
requirements that Axe < 0.5 and Ax + Ax1, < 0.5, we use
condition (19b) to choose the proper combination of wave-
lengths.

If X, = XI = 0.54811314 pm and X,\ = X14 = 0.65213641 pm
are chosen, then from Eq. (15) we have A 141 = -0.161554087;
from condition (19b), Ae = 0.0368 and An<, = 0.1584. Now,
IA141I > An1, > Ae; obviously the combination of Xl and X14
can satisfy condition (19b). From Eq. (13a) we obtain M14'
= 9540 and e 4 " = 0.726; from Eq. (23), Am, 4 = 1833, as
shown in Table 3; from Eq. (24), z = 1833 - 11379 + 9540 =
-6. Using Eq. (17), we obtain

S = x = Int F0.31-0.726-(-6)] = Int(-3454) = -35.
[ -0.161554087 J

Now, from Eqs. (19a) we have AXe = 0.12 < 0.5 and Axn +
Ax1, = 0.4045 + 0.0874 = 0.4919 < 0.5; hence x = -35 is
correct. From Eq. (11), we have ms = ml = 11379 - 35 =
11344; from Eq. (18), m,, = M14 = 9540 - 35 - (-6) = 9511.
Using the obtained value of ml or M14 and knowledge of
Am,,,,, we can obtain the integral orders of other wavelengths
as given in Table 3.

We know that the integral orders shown in Table 3 are
correct in comparison with those in Table 1.

Finally, the effective optical thickness n(X)d can be ob-
tained by Eq. (2) for each wavelength. The dispersion curve
of 2n(X)d in the range between X, = 5481.1314 A and X14 =

6521.3641 A can be obtained by a least-squares fit to the
measured values (mi + ei') Xi and can be fitted well to a third-
order polynomial as

2n(X)d = 65683760.46 - 1317.838609X + 1.641057598
X 10X-l2 - 7.363036946 X 10-6X',

where X is expressed in angstroms.

The Practical Method
The errors of the refractive index and the phase shift are
considered separately in the practical method.

Consider the case in which d' + Ad = 2.131 + 0.005 mm,
C1, ' + AC,, = -0.60 0.05, the measured e' and n' are as
shown in Table 2, An = 5 X 10-6, Ae = 0.01, and the range of
calibration is from 0.54811314 to 0.65213641 pm.

First, when we neglect the phase shift on reflection, we
find the integral orders m".

We choose the proper intervals of wavelengths according
to condition (21) in the given range of calibration. We let X,
= X1 = 0.54811314 pm; from expression (9) we have

Table 3. Calculated Results of the General Method
s u M'1 Aus mu, en" z Am,,u Aml Mu a

1 2 11379 -0.014660976 11212 0.232 0 167 167 11177
2 3 11212 -0.014441727 11050 0.759 -1 161 328 11016
3 4 11050 -0.014190795 10893 0.478 0 157 485 10859
4 5 10893 -0.013925084 10742 0.232 0 151 636 10708
5 6 10742 -0.013815791 10594 0.331 0 148 784 10560
6 7 10593 -0.013612135 10449 0.586 -1 143 927 10417
7 8 10449 -0.013416174 10308 0.825 -1 140 1067 10277
8 9 10309 -0.013216906 10173 0.013 0 136 1203 10141
9 10 10173 -0.013048088 10040 0.696 -1 132 1335 10009

10 11 10040 -0.012919540 9910 0.3573 0 130 1465 9879
11 12 9910 -0.012729757 9784 0.6384 -1 125 1590 9754
12 13 9784 -0.012585641 9660 0.8723 -1 123 1713 9631
13 14 9661 -0.012450697 9540 0.9912 -1 120 1833 9511

m=l - Aml,u= 11344 - Ami,u.
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Table 4. Calculated Results of the Practical Method

s u Mi' Aus mu
1

e,,t z Amsu Am,u iua

1 2 11379 -0.014658675 11212 0.258 0 167 167 11177
2 3 11212 -0.014439427 11050 0.785 -1 161 328 11016
3 4 11050 -0.014188499 10893 0.504 0 157 485 10859
4 5 10893 -0.013922801 10742 0.255 0 151 636 10708
5 6 10742 -0.013813493 10594 0.356 0 148 784 10560
6 7 10593 -0.013609838 10449 0.610 -1 143 927 10417
7 8 10449 -0.013413879 10308 0.849 -1 140 1067 10277
8 9 10309 -0.013214614 10173 0.037 0 136 1203 10141
9 10 10173 -0.013045794 10040 0.720 -1 132 1335 10009

10 11 10040 -0.012917241 9910 0.3804 0 130 1465 9879
11 12 9910 -0.012727459 9784 0.6612 -1 125 1590 9754
12 13 9784 -0.012583342 9660 0.8948 -1 123 1713 9631
13 14 9661 -0.012448391 9541 0.0134 0 120 1833 9511

a mu = ml- Aml, 1.1344 - Amr,u.

n'(X,)d' = n,'d' = nl'd' = 3111.230166 pm

and

A[n'(X,)d'] = A(n,'d') = And'

+ n'Ad = A(n,'d') = 7.310585,pm;

from relation (12),

I mI=4A(n,'d')IsX Ix =I(X9 = IlXmI = 53.35;

from Eq. (10),

2 [n,'d' + A\n'']
Ms'= Int.P{[ = l' = 11379.

If Xu = X2 = 0.55614231 pm, then from Eq. (15) we have

nu'Xs
Au' = , -1 = A 2 ' = -0.014658675;

from Eqs. (8a) and (8b),

6 =e + 3n + 31, = 0.0199 + 0.0766 + 0.0046 = 0.1011;

from relation (21), Am = 0.0149. Now IA21 - lXml = 0.78 < 1,
IA211 = 0.014658675 < Am; conditions (16) and (21) have
been satisfied. From Eq. (13a) we have miu' = M2' = 11212
and eu" = e 2" = 0.258. According to the selection rules of z,
now A 2 . l xm > 0, e2' > e2"; thus we select z = 0, and, from Eq.
(20), Am,,2 = 167. In a similar manner we can obtain other
Amsu as shown in Table 4. The integral-order differences
between the nonadjacent wavelengths can be obtained by
using Eq. (23).

We then choose the proper combination of wavelengths
according to the requirements that Axe < 0.5 and Axn < 0.5.
If Xu = X12 = 0.63610744 Am, then from Eq. (15) we have A12 '
=-0.140139609; from Eq. (19b) we have Ae = 0.0372 and

A 8d'An 01340
XU
mu

Now IA1211 > An > Ae; thus the combination of X, and X12
satisfies the requirements of Axe < 0.5 and Axn < 0.5. From
Eq. (13a) we have M12' = 9784 and el2" = 0.403; from Eq.

(23), Am 1,,2 = 1590 as shown in Table 4; from Eq. (24), z =
1590 - 11379 + 9784 = -5. From Eq. (17) we obtain

SX= ix = Int (0.01 40.403+5) = Int(-32.9) = -33.

Now, from Eqs. (19a) we have AXe = 0.14 < 0.5 and Ax, =
0.48 < 0.5; hence x = -33 is correct for the case in which we
neglect the phase shift on reflection. From Eq. (11) we have
ms" = ml' = 11379-33 = 11346; from Eq. (18), m,' = M12'
= 9784 - 33 + 5 = 9756.

Second, we find m with the known Ct,'. From Eq. (25) we
obtain

MO = Int(2n,,'C,') = Int(2nl2'C, , ') = Int [2 X 1.456924(-0.60)]

= Int(-1.7) = -2.

From relation (25a) we know that AC1, < 0.08 is required;
now AC, = 0.05 < 0.08, and hence m<> = -2 is correct.

Finally, from Eq. (26) we obtain ms = ml = 11346-2 =
11344 and m = M 2 = 9756 - 2 = 9754. By using the
obtained ml or M 12 value and knowledge of Amsu, we can
obtain the integral orders of other wavelengths as shown in
Table 4. Obviously, these results are correct as well.

The Correctional Method
When the requirements that Axn < 0.5 and/or Axe < 0.5 are
not satisfied, i.e., when the correct value of x cannot be
computed unambiguously from Eq. (17), the correctional
method is useful. In this method we first find an approxi-
mate integral order mI"', and then by using our knowledge of
C1, , we find the correct Am.

Consider the case in which d' i Ad = 2.131 + 0.005 mm,
Co' i AC, = -0.55 + 0.11, the usable spectral range is from
X4 = 0.57216534 pm to Xll = 0.62811012 pm, the measured
values of ei' and ni' are shown in Table 2 from X4 to Xll, An =
5 X 10-6, and Ae = 0.01. Under these conditions, if we use
the practical method, we find m,' = M4' = 10893, the largest
Aus = A,, 4 = -0.090239691, mu' = mil' = 9910, e>' = ell" =
0.865, Am4,,1 = 980, z = -3, 4x = -33, and Axn = 0.75 > 0.5.
Therefore we can obtain only the approximate values M4 "' =
10860 and mil'1 = 9880 and the other m"' values shown in
Table 5.

By using the initial ni' and Eq. (31), we can obtain d"'(Xi)
as shown in Table 5. After the obtained d "' (Xi) is fitted to a
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Table 5. Obtained Approximate mi" and dM'(XI) with
the Correctional Method

Xi (A) mi,' d"'(i) (A)

4 5721.6534 10860 21295833.41
5 5801.2346 10709 21295902.12
6 5881.3471 10561 21295859.89
7 5961.3796 10418 21295786.79
8 6041.3215 10278 21295799.07
9 6121.1367 10142 21295785.14

10 6201.0134 10010 21295670.64
11 6281.1012 9880 21295740.63

Table 6. Linear Fitting of d'(X,)a

i xi (A) Pi p,
2 d"'(Xi)Pi x 10-5

4 5721.6534 -279.620037 78187.36509 -59547.41726
5 5801.2346 -200.038837 40015.5363 -42600.07492
6 5881.3471 -119.926337 14382.3263 -25539.34469
7 5961.3796 -39.893837 1591.51823 -8495.706469
8 6041.3215 40.048063 1603.84735 8528.555027
9 6121.1367 119.863263 14367.20181 25525.82295

10 6201.0134 199.739963 39896.05281 42535.96465
11 6281.1012 279.827763 78303.57694 59591.39461

Total 48010.1875 268347.42483 -0.806102

a p = - a,, a = =Z 4Xz)/(2 1) 48010.1875/8 = 6001.273437, d, =
[1V4 d(Xi)Pi]/(E,!' 4 Pi2) = (-0.806102 x 105)/268347.42483 =
-0.300394908.

first-order polynomial, from Eq. (32) we obtain Co' = di =
-0.300394908 as shown in Table 6. By using Eq. (29) we
obtain

Am = Int[2n(C. ,'-C ,
11')] = Int[2 X 1.458(-0.55 + 0.300)]

= Int(-0.729) = -1,

where n may take its mean value. If AC, 6' = 0.05, we know
from relation (30) that the condition that AC1 , < 0.12 is
required; now AC, = 0.11 < 0.12, and hence Am = -1 is
correct.

Finally, by using Eq. (27) we can obtain the correct value
M4 = 10860 - 1 = 10859 and other integral orders as shown
in Table 3 from X4 to X11. Obviously, these results are cor-
rect as well.

DISCUSSION

It should be pointed out that the integral-order error in the
calibration has been contained within the calibrated optical
thickness because it is the product of the order of interfer-
ence and the standard wavelengths in the present method of
calibration. If the errors of the fractional orders could be
neglected, the measured value of the wavelength would not
be affected by the integral-order error in the calibration;
that is,

= 2nd"'(X) 2nd(X)
m"' +e m+e

This equation can easily be obtained from Eqs. (27) and (28).
Even though the fractional-order errors are taken into con-
sideration, the measured wavelength is

p 2nd' (X)
m + e

and its uncertainty is

(Aied + Aie) (ted + e)
AX = ( +m' 1+e m-Am+e (33)

where Aed and Ae are the errors of the fractional orders in
the calibration of the effective optical thickness and in the
measurement of the wavelength. It is obvious that the vari-
ation of the uncertainty of the wavelength is small as long as
Am << m. Specifically, when the contribution of the phase
shift on reflection to the integral order is less than the per-
missible error of the integral order for the precise measure-
ment of the wavelength, the phase shift may be neglected.
In fact, even though we do not have detailed knowledge of
the phase shift of reflection on the films, if we start with 11 <
7r in the reflecting range for a dielectric multilayer, we have
undoubtedly

(34)

where Xb is the wavelength of the edge of the high-reflecting
range. Hence from Eq. (25) we obtain

Imi < X b 0 .

For example, for a general dielectric multilayer film with X0
= 0.6 m and a linear phase-shift range from 0.55 to 0.65 m,
we undoubtedly have ImJ < 13. As can readily be seen from
Eq. (33), under the condition that d >> , the phase shift of
reflection can essentially be neglected in the present method
of calibration for a precise measurement of the wavelength.
However, the integral-order difference between adjacent
wavelengths must be correct; i.e., condition (21) must be
satisfied for the measurement of the wavelength. If detailed
knowledge of the phase shift on the reflecting films is not
available, we may estimate the value of 31, under condition
(34). The interval of adjacent wavelengths corresponding to
such a value of 6, will ensure the correctness of Amu if the
phase shift is neglected.

SUMMARY

A general method of calculating the integral-order number
of interference is developed, completely without a trial
method. The developed method of excess fractions is ex-
tended to the calibration of the effective optical thickness of
a Fabry-Perot talon with the dispersion of the refractive
index and the phase shift on reflection. Several useful
methods of calibration are provided and are illustrated by
examples. The condition under which the phase shift can
be neglected is given for calculating the correct integral-
order difference between wavelengths. It is pointed out
that exact knowledge of the integral order is not even neces-
sary and that the phase shift can thus essentially be neglect-
ed for a precise measurement of wavelength as long as the
effective optical thickness is calibrated as the product of the
fringe order of interference and the standard wavelength
and as long as the proper intervals of wavelengths are cho-
sen. A possible method for precise measurement of the
dispersive phase shift is given.
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