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Free-space optical interconnections are important both in massive digital optical computing and in communi-

cation systems. The optical butterfly interconnection has many advantages over other interconnections in

implementing various basic logic functions such as addition, subtraction, multiplication. This paper starts
with the conventional Karnaugh maps and Boolean algebra to implement a parallel n-bit ripple carry full

adder by the use of multilayer butterfly interconnection networks. Then we describe in detail the design and
architecture of the full adder and provide accurate interconnection networks and the structures or patterns of
key devices such as the masks to implement AND and OR operations in this calculation. Finally, we discuss

development of the interconnection in implementing logic operations.

I. Introduction

One of the most important uses of optics in comput-
ing and communication systems is the implementation
of complicated interconnections, namely, the research
of optical interconnections is significant in digital com-
puting and communication systems. Optical inter-
connections are the primitives of algorithm and archi-
tecture. An optical computer completely exploits its
full global interconnect capability.1-3 In free-space
interconnections, the regular optical interconnection
is research focused because of its various advantages,
such as its efficiency to implement logic functions, the
complexity of the implementation system, the difficul-
ty of controlling circuit depth (levels), and blocking.
The crossbar interconnect, the perfect shuffle inter-
connect, the butterfly interconnect, the Clos intercon-
nect, and other special interconnects are major re-
search subjects in optical computing and
communication areas, where the crossbar interconnect
is an ideal nonblocker and is suitable for networks that
include other processors. It is both pipeline and free
space and is fundamental in implementing the avail-
able multistage networks.3 Now, the optical perfect
shuffle interconnection is widely studied; it not only
can implement some simpler logic operations such as
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AND, OR, AND-OR, XOR, AND-OR-INVERT, but it can
also constitute more complex and more effective com-
puting systems such as adders, subtracters, multipli-
ers, dividers, and other programmable logic arrays. In
interconnect techniques, the perfect shuffle is com-
monly used for interconnecting array processors, per-
mutation networks, sorting, and for some special algo-
rithms such as the fast Fourier transform (FFT).4,5

Optical implementation of the perfect shuffle in-
cludes first, three phases: an input array split into two
copies, each copy is magnified by a factor of 2, second,
shifted, and third, interlaced.6-8 The magnification
step may introduce special problems for diffraction-
limited devices. The butterfly interconnection is a
better way to overcome the disadvantages of the per-
fect shuffle interconnection. Although both the per-
fect shuffle and the butterfly are regular free-space
interconnections, they are different in architecture
and optical implementation approach.5 910 The digi-
tal circuit design of an n-bit parallel ripple carry full
adder and its Boolean equations are provided in Sec.
II. The architecture of a butterfly interconnect is
described in Sec. III. In Sec. IV we discuss the butter-
fly interconnect network and the patterns of masks
used in the architectures. Finally, in Sec. V we analyze
the development of the interconect architectures.

II. Design of Circuit and Boolean Equations

Two different approaches are possible for develop-
ing faster optical computing: either constituent de-
vices can be speeded up or multiple devices can be
configured in parallel. Most of the papers studying
optical adders start with half-adders; the reason being
that only a half-adder has two binary input digits A
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Fig. 1. Diagram of a ripple carry
full adder.

Table 1. Truth Table of the Full Adder

Ai Bi Cl-I I Si Ci

0 0 0 10 0
0 0 1 1 1 0

0 1 0 1 1 0

0 1 1 1 0 1

1 0 0 1 1 0

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 (1 1
__________________________________________ t_______________________

and B, and its sum S and carry C are just related to
inputs A and B.5'9-1. A full adder, however, at its ith
bit, sum Si, and carry Ci are related to the previous
carry Ci - 1 as well as to inputs Ai and Bi. Hence, the
addition of two multibit binary digits in the optical
approach is difficult; controlling the operating for car-
ry Ci is not so easy as in the electronic approach. The
implementation of the addition through perfect shuf-
fle and butterfly interconnect networks in Ref. 5 uses a
single-layer network based on serial additions.

A ripple carry adder can implement the additions of
two multibits digits if the carry Ci - 1 from the previ-
ous bit cooperates with augend Ai and addend Bi in
one layer network such as in Ref. 5 and a multilayer
network is used. For example, Fig. 1 is the block
diagram of an n-bit parallel ripple carry full adder,
where Ai and Bi are the ith bit augend and addend,
respectively. This approach is different from that in
Refs. 11-13.

At first, we consider the addition of the ith bit au-
gend Ai and addend Bi. The Ci - 1 is the carry from
the previous bit, the ith bit carry is Ci, summed, while
the carry of the most significant bit Cn is thought of as
the Sn + 1. All these numbers are binary, so we can
obtain the truth table of the calculation in terms of
Boolean algebra as shown in Table I.

We note that there are eight cases in the addition.
With the truth table, we can map the Karnaugh maps
for Si and Ci, which we need to obtain the Boolean
equations of Si, Ci and their inverts K, Ci as shown in
Fig. 2. In terms of the Karnaugh maps in Fig. 2, we
note that four minterms must be implemented to

Ci-l\AiBi 00 01 11 10

0
1

0
I

I 1 1-I-1

1I0 11101
11101 1 1

I 1 1-1-1
1010 11101
1011 11111
l _ _ J _ l _ _ l

(a). Si

(b). Ci

Fig. 2. Karnaugh maps of Si and Ci: (a) the sum output of the ith
bit: Si and (b) the carry output of the ith bit: Ci.

achieve any bit addition, both for sum Si and carry Ci.
The four minterms are composed of various constitu-
ents of three variables and their inverts Si(Ai,Bi,Ci -
1),Si(AiBi,Ci - 1), Ci(Ai,Bi,Ci - 1), and Ci(Ai,Bi,Ci -
1). We also use dual-rail logic as in Ref. 5 because it
simplifies cascaded stages of the setups.

As shown in Fig. 2(a), Si will be 1 whenever Ai, Bi,
and Ci - 1 are 100, 010, 001, and 111. The correspond-
ing Boolean expression is

Si = AiBi Ci-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1, (1)

where Si is zero, namely, the invert of Si is 1 whenever
Ai, Bi, and Ci - 1 are 011, 101, 110, and 000. The
corresponding Boolean expression is

Si = iBiCi- + Ai~iCi- + AiBiCi-1 + Ai BiCi-1. (2)

In a similar manner, the carry function and its invert
can be expressed as

Ci = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi -1, (3)

Ci = AiBi Ci-1 + XtBiCi-1 + AiBiCi -1+Ai Bi Ci-1. (4)

These results are the same as those in Ref. 5.

Ill. Butterfly Networks and Computing Architectures

We find from Eqs. (1)-(4) that there are only two
stages of logic calculations necessary to implement any
required function (Si, Si, Ci, or Ci): one is the AND
stage which provides the minterms expected, and the
other is the OR stage which implements the final func-
tions expected.
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Fig. 3. Schematic of a ripple carry full adder: (a) AND stage and (b) OR stage.

Butterfly interconnects can implement all the func-
tions which can be achieved by perfect shuffle inter-
connects.8 Reference 5 just implements one bit AND

and OR of the full adder using the perfect shuffle net-
works. The perfect shuffle networks, however, have
two major disadvantages in optical additions: first, all
the angles of two adjacent interconnect lines are not
different from each other, which makes optical imple-
mentation arrangements of practical upsets more dif-
ficult; second, it has a magnification for either of two
copies and that introduce special problems for diffrac-
tion-limited devices.5 Therefore, we consider using
only butterfly interconnects and design a ripple carry
full adder according to the butterfly parameters and
the parallel requirement for a ripple carry full adder as
shown in Fig. 3.

A butterfly interconnect is also a regular free-space
interconnect like a perfect shuffle. There are three
angles of connections in the butterfly: a copy opera-
tion, a shift to the left by N/2 - 1, and a shift to the
right by N/2 - 1,so all the angles between two adjacent
interconnects are the same. This simplifies optical
upsets and makes use of optical characteristics more
efficiently in implementations.

An optical implementation of the butterfly can be
made by split/shift/combination operations in the

style of Huang's symbolic substitution.2 In terms of
functions of the n-bit parallel ripple carry full adder in
Sec. II, we can design the architecture of the digital
optical adder as shown in Fig. 3, where the B-N are
multilayer (2-D) butterfly networks, one dimension is
for Boolean logic operations of any bit and the other is
for parallel ripple carry operations of all bits.

In the AND stage we use butterfly networks to imple-
ment the logic calculations. We split an input into
three identical copies, passing through the butterfly
networks; we then make one shift to the left, one non-
shifted, and another one to the right; next we make
them pass through the three masks Ml, M2, and M3,
respectively; finally, they are recombined. Therefore,
the AND operation can be completed. The output of
the stage is carried out while the three masks M4, M5,
and M6 in the OR stage are different from Ml, M2, and
M3. After a time delay, sum output Si and carry
output Ci are successively produced at different
places, and carry Ci is fed back to the next layer of the
AND stage.

IV. Butterfly Interconnect Networks and Mask Patterns

The optical interconnect boxes (B-N) in Fig. 3 are all
butterfly interconnections, where (a) is for the AND
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Fig. 4. Butterfly network for the AND stage: (a) pattern of one layer and (b) view from the input of the network.
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Fig. 5. Butterfly network for the OR stage: (a) pattern of one layer and (b) view from the output of the network.
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Fig. 8. Masks of the AND stage: M3.
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Fig. 7. Masks of the AND stage: M2. Fig. 9. Masks of the OR stage: M4.
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Fig. 10. Masks of the OR stage: M5.

Fig. 11. Masks of the OR stage: M6.

operation and (b) is for the OR. Their structures are
shown in Figs. 4 and 5, respectively. The three masks
of each stage are used to implement the interconnec-
tions for the shift to the left, the nonshift, and the shift
to the right, respectively. All the operating cells (or
devices) have three shifts, so the masks in Fig. 3 are the
patterns that allow only the interconnects expected in
Boolean logic expressions to pass. The network struc-
tures in Figs. 4 and 5 are really combinations of the
three parts. The patterns of Ml, M2, and M3 are
shown in Figs. 6, 7, and 8. The others-M4, M5, and
M6-are shown in Figs. 9, 10, and 11, where the light
squares are transparent and the dark squares are
opaque.

V. Conclusions

This paper improves the single-layer perfect shuffle
networks discussed in Ref. 5 and enlarges them into
multilayer networks from single-layer networks
(which are only suitable for one-bit additions with
carry in a full adder) and implements n-bit parallel
additions according to the characteristics of ripple car-
ry full adders. We note that it is more convenient to
implement an n-bit parallel ripple carry full adder
using multilayer butterfly interconnects; only a feed-
back system is needed in the setup, that is, the carry
output is fed back to the input of the AND stage. In
addition, the interconnections can also be used to im-
plement subtracters, multipliers, address coders, and
other programmable logic arrays. In terms of Ref. 5,

all the logic functions that can be implemented by
perfect shuffle interconnections can be made by the
butterfly interconnection; the optical approach of the
butterfly interconnects is easier than that of the per-
fect shuffle as discussed in Sec. III. Optical setups
that implement a butterfly of eight-node width have
been proposed, but the setups generate only four min-
terms9 and are even more complicated. In future
work, we propose to design the optical setups of butter-
fly interconnects that can generate eight minterms,
that is, to have the width of sixteen nodes to implement
an n-bit parallel ripple carry full adder, a ripple carry
subtracter, where the key devices are distinctly differ-
ent from that in Fig. 9.
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