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Abstract. Free-space optical interconnections are important in both mas-
sive digital optical computing and communication systems. The architec-
tural features of three interconnection networks are analyzed and com-
pared, and the optical butterfly interconnection is shown to have many
advantages over other interconnections in implementing various basic
logic functions such as addition, subtraction, multiplication, and fast Four-
ier transforms (FFTs). Starting with conventional Karnaugh maps and
Boolean algebra, the characteristics of full addition and full subtraction
are analyzed and compared. An n-bit parallel calculator that can imple-
ment both ripple carry full additions and ripple borrow full subtractions
using multilayer butterfly interconnection networks is designed. Then the
schematic and architecture of the full adder/subtractor, interconnection
networks, and the patterns of key devices such as masks to implement
AND and OR operations in this calculation are described in detail. The
correct simulation results of several groups of multibit digits are provided.
Finally, the development of the interconnections in implementing logic
operations is discussed.

Subject terms: butterfly interconnections; ripple carry and borrow; full adder/
subtractor; mask.
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1 Introduction

Research in free-space optical interconnections has become
more and more significant as computing and communication
systems have developed. In digital optical computing, op-
tical interconnections are the primitives that constitute var-
ious optical algorithms and architectures because an optical
computer completely exploits its full global interconnect
capability.!~3 In free-space interconnections, the regular op-
tical interconnection is a research focus because of its ad-
vantages in areas such as the efficiency to implement logic
functions, the complexity of implementation systems, the
difficulty of controlling systems, circuit depth (levels), and
blocking. The optical crossbar interconnect, the perfect shuffle
interconnect, the butterfly interconnect, the Clos intercon-
nect, and the crossover interconnect networks, among oth-
ers, are major research subjects in optical computing. Op-
tical perfect shuffle interconnections, the optical butterfly
interconnections, and the optical crossover interconnections

Paper 08061 received June 11, 1991; revised manuscript received Dec. 26, 1991;
accepted for publication Dec. 27, 1991.
© 1992 Society of Photo-Optical Instrumentation Engineers. 0091-3286/92/$2.00.

1568 / OPTICAL ENGINEERING / July 1992 / Vol. 31 No. 7

are widely studied because not only can they implement
some simpler logic operations, such as AND, OR, AND-OR,
XOR, AND-OR-INVERT, but they can also constitute more
complex and effective computing systems, such as adders,
subtractors, multipliers, dividers, and other programmable
logic arrays.*~8 The perfect shuffle, the crossover, and the
butterfly are commonly used for interconnecting array pro-
cessors, permutation networks, sorting, and some special
algorithms such as the fast Fourier transform® !0 (FFT).

Although the perfect shuffle, the crossover, and the but-
terfly are regular free-space interconnections and are to-
pologically equivalent, they differ in architecture and in
their optical implementation approaches.?~!° The architec-
tural features and optical implementations of these three
interconnect networks are analyzed and compared in Sec.
2. The digital circuit design of an n-bit parallel full adder/
subtractor and Boolean equations are provided in Sec. 3.
The architectural features of a butterfly interconnect are
described in Sec. 4. In Sec. 5, we discuss the butterfly
interconnect network and the concrete patterns of the masks
used in its architectures. Finally, we analyze the develop-
ment of interconnect architectures in Sec. 6.
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2 Analyses and Comparisons of Three Networks

The perfect shuffle, the crossover, the butterfly, and the
manipulator all have a size of N=2" and are suitable for
various multistage networks (MINs) in which the link in-
terconnection patterns often include sizes’ '3 N, N/2, N/4,
etc. The perfect shuffle, the crossover, and the butterfly
networks are topologically equivalent because each node
has two fan-in and two fan-out lines.!?-!3 However, as shown
in Fig. 1(a) (size, N = 8), their architectures differ as do the
mathematical expressions for their address numbers for in-
puts and outputs. For a one-stage perfect shuffle network,
as shown in Fig. 1(a), we define the address numbers of
the nodes at the input end as k(k=0, 1, ..., N—1), of the
left link lines at the output end as Ki, and of the right link
lines as K, (of course, K1, K; =0, 1, ..., N—1). This gives
the following relations:

)2k (k<N/2)
Kl—{Zk—N+1 (N2<k<N) , M

,_[k+1 (k<)
K’“{zk—zv (N2<k<N) . @

For a one-stage crossover network, as shown in Fig. 1(b),
with two fan-in lines or two fan-out lines at each node, one
line is a straight interconnect and the other is a crossover
interconnect. We define the address numbers of the nodes
with straight lines and crossover interconnect lines as Kj
and K; (K5, Kc=0, 1, ..., N—1), respectively, on the
output end and as k(k=0, 1, ..., N—1) on the input end.
For the crossover network, then, we have the following
relations:

Ks=k (k=0,1,...,N-1), 3)

K.=N—1-k (k=0,1,..,N—1) . 4

For a one-stage butterfly network, as shown in Fig. 1(c),
with two fan-in lines or two fan-out lines at each node, one
is a straight interconnect line and the other is a butterfly
interconnect line. We define the address numbers of the
nodes of the straight and butterfly interconnect lines as K&
and K,(Ks, K, =0, 1, ..., N— 1), respectively, on the output
end and as k on the input end, which gives the following
relations:

Ks=k (k=0,1,...,N-1), (5)

,_[k+nr2 (k<ni2)
Ks {k—N/Z (N2<k<N) . ©

To analyze and compare the construction features of these
three interconnect networks, let us define 8 =K’ —k, which
represents the interconnect angles of link lines from the input
end to the output end. Then, for the perfect shuffle, we
have, from Egs. (1) and (2),

k (k<N/I2)

31=K1—k={k_N+1 (N2<k<N) , @

(c)

Fig. 1 Three network architectures: (a) perfect shuffle; (b) crossover;
and (c) butterfly.

e Sk (k<N2)
o =K; k_{k—N (N2<k<N) . ®)

Note from Eqgs. (7) and (8) that the interconnect angles
for both the left and right interconnect lines in the perfect
shuffle networks, i.e., both 8; and 8,, depend on the number
of nodes k.

For the crossover network, we obtain, from Egs. (3) and

4,

3 =K;—k=0 (k=0,1,...,N-1) , 9)
and
d.=K¢:—k=N-1-2k (k=0,1,...,N—-1) . (10)

Note from Eqs. (9) and (10) that in the crossover network,
the interconnect angles of the straight interconnect lines (3;)
do not depend on number of address nodes k, whereas the
interconnect angles of the crossover interconnect lines (8.)
do depend on the number of address nodes k; that is, all the
straight interconnect lines are parallel, whereas all the cross-
over interconnect lines are not, which is easy to see in
Fig. 1(b).
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For the butterfly network, we obtain, from Egs. (5) and
(6);

8 =K;—k=0 (k=0,1, ...,N=1), (1)
[N k<nn)
o =Ki k—{—N/Z (N2<k<N) . (12)

Note from Eqgs. (11) and (12) that not only the interconnect
angles of the straight interconnect lines (8;) but also those
of the butterfly interconnect lines (3,) are independent of
the number of address nodes k; that is, not only all the
straight interconnect lines but also the butterfly interconnect
lines are parallel, which is also easy to see in Fig. 1(c).

In terms of the above analyses, although the perfect shuf-
fle, the crossover, and the butterfly networks are topolog-
ically equivalent, butterfly networks have more architectural
advantages, which is important for the implementation of
digital optical computing systems, as the following analyses
show.

Optical implementation of the perfect shuffle includes
three phases. First, an input array is split into two copies
(i.e., two identical images). In fact, these two copies can
be considered as one original and one copy. Each copy is
then magnified by a factor of 2, shifted, and inter-
laced.#-6:10.11 The magnification step can introduce special
problems for diffraction-limited devices, other than parallel
(or collimating) optical systems, because it is completed in
imaging lens systems with a beamsplitter. Of course, in
optical implementation, the perfect shuffle has the advantage
of being obvious and easy to understand.

Optical implementation of crossover networks also re-
quires polarization-splitter and prism arrays, which may
cause some difficulties in adjusting experiments. Recently,
self-electronic-effect devices (SEEDs) have been success-
fully used to implement more optical digital calculations
because crossover networks have more regularities than per-
fect shuffle networks. This, however, contributes to the high
cost of implementation.”~°

As discussed above, the butterfly network is the most
regular of these three networks in terms of construction
because not only all the angles of the straight interconnect
lines (8;) but also those of the butterfly interconnect lines
(8p) are independent of the number of address nodes k,
which shows that all the butterfly interconnect lines, like
the straight interconnect lines, are parallel. This property
of butterfly networks is similar to that of manipulator net-
works. 12714 Therefore, optical implementation of butterfly
interconnection networks can be completed under parallel
(collimating) light beams, and no magnification step is needed.
The butterfly interconnection is, therefore, a better approach
because it overcomes the disadvantages of perfect shuffle
and crossover interconnections. In addition, optical imple-
mentation of the butterfly can be performed in the style of
Huang’s symbolic substitution by using optical intercon-
nection gratings.?1413

3 Circuit Design and Boolean Equations

3.1 Full Addition/Subtraction

Two possible approaches for developing faster optical com-
puting involve either speeding up constituent devices or

1570 / OPTICAL ENGINEERING / July 1992 / Vol. 31 No. 7

A B C
n

n-‘l(pnq) An-1Bn-1 Cn-2(an-z) A B1 co(f’o)

Tmly ]

wE ek |

n 1
(0,) (0, (p,)

n-1

Fig. 2 Diagram of a parallel full adder/subtractor.

configuring multiple devices in parallel. There are also two
major ways to exploit the parallelism of multiple channels:
by employing symbolic substitution!>-1¢ or by using free-
space interconnections. Most of the papers studying optical
adders begin with half-adders>'®- because only a half-adder
has two binary input digits A and B, and its sum S and carry
C are related only to the inputs A and B. Similarly in the
half-subtractor, the difference D and borrow {3 are related
just to the inputs A and B. A full adder (or a full-subtractor),
however, at its i’th bit, sum S; (or difference D;) and carry
C; (or borrow B;) are related to the previous carry C;— (or
borrow {3;—; required by previous bit) as well as to the
inputs A; and B;. Hence, the addition or subtraction of two
multibit binary digits is difficult in optical approaches. Con-
trolling and operating carry C; (or borrow {3;) is not as easy
as in electronic approaches.

A ripple carry adder can implement the addition of two
multibit digits if the carry C;—; from the previous bit is co-
operated with the augend A; and addend B; at one network
layer and a multilayer network is used. For similar reasons,
a ripple borrow subtractor can also implement the subtrac-
tion of two multibit digits if the borrow B;-; required by
the previous bit co-operates with minusend A; and subtra-
hend B; in the network and a multilayer network is used.
For example, Fig. 2 is a block diagram of an n-bit parallel
calculator that can implement either the addition or sub-
traction of two multibit digits. In addition, A; and B; are
the i’th-bit augend and addend, respectively, and in sub-
traction, A; and B; are the i’th-bit minusend and subtrahend,
respectively. Here, C;_1 is the carry from the previous bit,
S; is the i’th-bit sum, and C; is the i’th-bit carry. While
subtracting A; and B; are the i’th-bit minusend and subtra-
hend, respectively, 3;— is the borrow required by previous
bit, and D; and B; are the i’th-bit difference and the i’th-
bit borrow, respectively. We then expand the i’th-bit results
to the general case. This approach is different from that in
Refs. 16 through 23.

3.2 Truth Tables and Boolean Equations

First, we consider the addition of i’th-bit augend A; and
addend B;. If C; - is the carry from the previous bit, summed,
then the i’th-bit sum is S; and the i’th-bit carry is C;, whereas
the carry of the most significant bit C,, is thought of as S, + 1.
All the numbers are binary, so we can obtain the truth table
of the addition in terms of Boolean algebra, as shown in
Table 1. In a similar manner, we next consider the sub-
traction of the i’th-bit minusend A; and subtrahend B;. If
the B, is the borrow required by the previous bit, differed,
then the i’th-bit difference and borrow produced are D; and
B:, respectively. Now by limiting subtraction in the case of
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Table 1 Truth table of full addition.
Bl Cl-l Sl Cl

o
-

—_,——_,.—_—e 00O
—_—_—oO——oO
—_OO—O——O
—_———e— oo O

—_—O— O OO

Table 2 Truth table of full subtraction.
Al Bi B i-1 Di B i

—_————o o oo
—_—_—eo—m—oo
—_—o—mo—Oo—o
—_OOO M —O

the minusend > the subtrahend, we can obtain the truth
table for subtraction, as shown in Table 2.

Note that there are eight cases both in addition and sub-
traction. With the truth tables, we can map the Karnaugh
maps for S; and C; or D; and B;, which we need to obtain
the Boolean equations of S; and C;; or D; and B;, and their
inverts S;, C;, D;, and f3;, as shown in Figs. 3 and 4, re-
spectively.

In terms of the Karnaugh maps in Fig. 3, we can obtain
the four Boolean equations for addition as follows:

S;=ABiCi— 1 +ABCi— 1 +AB:Ci-1+ABCi—, , (13)
S;=ABiCi-1+ABCi— 1 +ABCi_1+ABCi—1 , (14)
Ci=AB,Ci-1+ABCi_1+ABC;_\+AB,Ci—1 , (15)
Ci=ABCi_1+AB,Ci—1+AB:Ci—1+ABCi—; . (16)

In a similar manner, according to Fig. 4, we can obtain
the four equations for the subtraction as follows:

D;=ABBi-1+ABBi-1+ABBi-1+ABBi-1 , (17)
D;=ABBi-1+ABBi-1+ABBi—1+ABBi-1 , (18)
Bi=ABBi-1 +ABBi—1+ABBi_1+ABBi—1 , (19
Bi=ABiBi-1+ABBi-1+ABBi-1+ABBi-1 .  (20)
4 Butterfly Networks and Computing

Architectures

From Egs. (13) through (20) we find that only two stages
of logic calculations are needed to implement any required
function in either addition (S;, S;, C;, or C;) or subtraction
(D;, D;, Bi, or B ): one is the AND stage, which provides
the expected minterms, and the other is the OR stage, which
implements the final expected functions. As described in

C:-1\A:B: 00 01 11 10

0 01101 @. S
1 110110
0 0j011]0f (b).Cs
1 0|1 11]1

Fig. 3 Karnaugh maps of S; and C;: (a) the sum output of the /'th
bit S; and (b) the carry output of the /'th bit C;.

B:-1\AsB: 00 01 11 10

0 0 |71(0(1] @.D:
1 11041110

0 02110 1] ®. B:
1 111]11]0

Fig. 4 Karnaugh maps of D; and B;: (a) the difference of the /'th bit
D; and (b) the borrow output of the i'th bit ;.

Sec. 2, the butterfly interconnection has many advantages
over other interconnect networks in the implementation of
optical logic operations and functions because it has more
regularity in terms of architecture, which makes it more
convenient for optical implementation. It can be imple-
mented either with beamsplitters!”-18 or with interconnect
gratings like the manipulator networks,'* because these two
networks have similar architectures. The fact that butterﬂy
interconnections have been implemented recently'® using
SEED:s is a promising development in the optical computing
area. Because of this, we have used butterfly interconnects
to design a parallel full adder/subtractor according to the
butterfly parameters and the parallel requirements of the
calculator, as shown in Fig. 5.

Because manipulator networks can be implemented using
phase gratings, and because the butterfly is similar to ma-
nipulator networks in architecture, we can note that there
are three connection angles in the butterfly: a copy operation
(i.e., one input is split into three identical copies, of course,
we can also consider one input as split into two identical
copies, as in Refs. 17 and 18, but at most two copies are
used); a shift to the left by N/2; a nonshift; and shift to the
right by N/2. In other words, all the left butterfly (k < N/2)
interconnect lines are parallel, as are all the straight inter-
connect lines (nonshift) and all the right butterfly (N/2 < k <N)
interconnect lines. This simplifies optical setups and, more
significantly, makes use of optical characteristics in imple-
mentations. An optical implementation of the butterﬂy can
be made by spht/shlft/combmatlon operations in the style
of Huang’s symbolic substitution.? In terms of the functions
of the n-bit parallel full adder/subtractor in Sec. 3, we can
design the architecture of digital optical calculator, as shown
in Fig. 5, where B —N’s are multilayer (2-D) butterfly net-
works, with one dimension for Boolean logic operations of
any bit and another for parallel ripple carry or borrow op-
erations on all the bits.

In the AND stage, we use butterfly networks to imple-
ment logic calculations. We split an input into three identical
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Fig. 5 Schematic of a full adder/subtractor: (a) AND stage; (b) OR stage of the addition; and (c) OR

stage of the subtraction.

copies, passing through the butterfly networks, then make
one shifted to the left, one nonshifted, and another one
shifted to the right. Next we pass them through the three
masks M1, M2, and M3. Finally, they are combined, and
the AND operation is completed. The output of the stage
is carried into one of two OR stages and carried out by a
similar process to obtain the final expected functions. Which
OR stage, the addition’s as in Fig. 5(b) or the subtraction’s
as in Fig. 5(c), the output from the AND stage should be
carried into is determined by practical requirements—whether
the process is ‘““+’’ or *‘ —"’. Of course, M4, MS, and M6
in the OR stage of the addition are different from M7, M8,
and M9 in the OR stage of the subtraction. After the time
delay, sum output S; (or difference D;) and carry output C;
(or borrow B;) are produced at different places, and carry
C; (or borrow B;) is fed back to the next layer of the AND
stage.

5 Butterfly Interconnect Networks and Mask
Patterns

The optical interconnect boxes (B —N’s) in Fig. 5 are all
butterfly interconnections. Figure 5(a) is for the AND op-
eration, Fig. 5(b) is for the OR operation of addition, and
Fig. 5(c) is for the OR operation of subtraction. The ar-
chitectures are shown in Figs. 6, 7, and 8, respectively.
The three masks in each stage are used to implement the
interconnections for the shift to the left, the nonshift, and
the shift to the right, respectively. All the operating cells
(or devices) have the three shifts, so the masks in Fig. 5
are the patterns that allow only the interconnects expected
in Boolean logic, Eqgs. (13) through (20), to pass. The net-
work structures in Figs. 6, 7, and 8 are really combinations
of the three parts. The patterns of M1, M2, and M3 are
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(b)
Fig. 6 Butterfly network for the AND stage: (a) pattern of one layer
and (b) view from the input of the network.

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 09/10/2012 Terms of Use: http://spiedl.org/terms



BUTTERFLY INTERCONNECTION IMPLEMENTATION FOR AN ADDER/SUBTRACTOR

Comy Onct  Sn-ifaed
by EEEOEHENEEEREEEE
cT
olololololialalolalololalola

e
Sn+1 sn+1 Snsn
(b)
Fig. 7 Butterfly network for the OR stage of the addition: (a) pattern
of one layer and (b) view from the output of the network.

shown in Figs. 9(a), 9(b), and 9(c), respectively; the patterns
of M4, M5, and M6 are shown in Figs. 10(a), 10(b), and
10(c), respectively; and the patterns of M7, M8, and M9
are shown in Figs. 11(a), 11(b), and 11(c), respectively. In
the figures, the light squares are transparent and dark squares
are opaque. We simulated several groups of multibit digits
with our system on a computer and obtained the correct
results, as listed in Tables 3 and 4. Table 3 is the results
of additions of several groups of multibits, and Table 4 is
the results of the subtractions of several groups of multibit
digits.

6 Conclusions

In this paper, we analyzed and compared the architectural
features of the perfect shuffle, the crossover, and the but-
terfly networks and demonstrated the advantages of the but-
terfly interconnection in implementing various optical logic
calculations such as addition, subtraction, multiplication,
division, and other special digital calculations, which are
shown in terms of interconnect angles and the convenience
of optical implementation. Promising developments in op-
tical computing were also discussed. Then we designed an
n-bit parallel full adder/subtractor with multilayer butterfly
networks according to the characteristics of the ripple carry
full adder and the ripple borrow full subtractor, and obtained

ABC ABC ABC ABC ABC ABC ABC ABC

1!!@!

HEEEH®

=

EEEEEEBE BEEE
B g D5
(a)
, B\" -1 BB,
il FEEHEEHEHEEEEBEER
I S

vig=, IEDEEEEEEEEEEEEE

p n Dn Dn
vit=n FIEAHNHEEEHEEBEBEEA
(b)

Fig. 8 Butterfly network for the OR stage of the subtraction: (a) pattern
of one layer and (b) view from the output of the network.
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(c)
Fig. 9 Mask of the AND stage: (a) M1; (b) M2; and (c) M3.
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Fig. 10 Mask of the OR stage of the addition: (a) M4; (b) M5; and
(c) M6.
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(c)

Fig. 11 Mask of the OR stage of the subtraction: (a) M7; (b) M8,
and (c) M9.

the correct simulation results for several groups of multibit
digits. Note that it is more convenient to implement an
n-bit parallel full adder/subtractor using the multilayer but-
terfly interconnections because only a feedback system is
needed in the setups, that is, the carry (or borrow) output
is fed back as input to the AND stage. The interconnections

15674 / OPTICAL ENGINEERING / July 1992 / Vol. 31 No. 7

Table 3 Simulation results of full addition.

A B N
010101 011011 110000
0110110 0110011 1101001
01101 00111 10101
001010 011101 100111

Table 4 Simulation results of full subtraction.

A B D
011110111 011001011 000101100
0111010 0101101 0001101
01101101 00010110 01010111
0111001001 | 0000110110 0110010011

can also be used to implement multipliers, dividers, address
coders, and other programmable logic arrays. In terms of
Ref. 5, all the logic functions that can be implemented by
perfect shuffle interconnections can be made by the butterfly
interconnection because these two interconnect networks are
topologically equivalent. The optical approaches of the but-
terfly interconnects are easier than those of the perfect shuf-
fle, as discussed in Secs. 2 and 4. Hence, optical butterfly
interconnections more easily constitute massive parallel and
short-interconnect-stage systems that are required by digital
optical computing systems and are suitable for many optical
properties.?0-23 Optical setups that can be used to implement
the butterfly of eight-node width have been proposed, but
are very complicated. The recently proposed use of SEEDs
to implement butterfly interconnections makes possible a
wider application of butterfly interconnections in optical
computing. In future work, we will design an optical setup
based on butterfly interconnects that can generate eight min-
terms, that is, one having 16-node width, to implement an
n-bit parallel full adder/subtractor, where the key devices
are distinctly different from those in Refs. 17 through 19.
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