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As modern optical information processing has developed, research on massive and parallel rapid
computing and processing has attracted more attention. In this paper, butterfly networks and a variety
of types of optical information processing are studied and discussed. For a basis, one- and two-
dimensional butterfly interconnection networks are studied in constructions, and the relationship and the
transformation between them are provided. Algorithms for both the one- and two-dimensional fast
Fourier transforms are analyzed, one- and two-dimensional butterfly networks for implementing the
algorithms are built, and computer-simulation results are attained. Finally, an underlying optical
network system is suggested and studied in respect to its architecture and advantages; it is a new optical
butterfly network hardware system consisting of two-dimensional binary phase diffraction gratings,
which perform a variety of types of fast-Fourier-transform-based optical information processing.
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1. Introduction

As early as 1964 VanderLugt's concept of coherent
spatial filtering brought optical information process-
ing into wide use. Since that time, a variety of
optical information-processing theories and applica-
tions have stimulated further study. This vigorous
trend has continued and greatly developed, not only
because optical systems are capable of performing
certain complex operations, but also because the
underlying physical theory has been introduced in an
input-output system model.1 2 Especially, optical
information processing that includes digital signal
processing and analog image processing has recently
been widely studied and developed.3-6 The advan-
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tages of optical information processing have attracted
more and more interest with new developments and
applications of current optical science, such as optical
pattern recognition, target tracking, radar signal
processing, optical computing, and optical communi-
cation.7-10 Furthermore, the trend of digitized and
parallelized rapid optical information processing has
shown promising development. As a result, the re-
search on optical interconnections for implementing
optical information processing shows high potential
because optical interconnections have desirable char-
acteristics such as massive capacity, parallelism, and
transmission in free space, which are suitable for
massive parallel rapid processing.3-6 11"12

Recently, researchers of optical information process-
ing have derived some approximate equations for
computing the functions of interconnections and
have attained the possibility of implementing the
equations. Flow diagrams are constructed for the
algorithms in such a way as to exhibit maximum
parallelism. The operations are represented as nodes
and connections. The flow diagrams are applied to
an optical interconnection system, and the nodes
indicate available functional elements. 11 12 Optical
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interconnections have some advantages over elec-
tronic interconnections, such as reduced effective
capacity loading and increased immunity to mutual
interference in connecting multiprocessors.1314 The
developments of some new optical logic devices and
technologies, such as spatial light modulators7 915 and
symmetric self-electro-optic-effect devices,16 suggest
that optical interconnections may become available.
The cost, speed, and size of these connections will
likely be greater than those for conventional semicon-
ductor techniques.

The algorithms and architecture of optical informa-
tion processing include spatial filtering, frequency-
spectrum analysis, convolution, correlation, distinct-
feature extraction, and edge enhancement. They
are based on Fourier transformations and Walsh-
Hadamard transformations, which are the basic
optical information-processing algorithms. 2 171 8

Therefore the purpose of this paper is to study a
synthetic optical butterfly network hardware (OBNH)
system for the fast Fourier transforms (FFT's) to
implement optical information processing, since the
FFT's are based on the butterfly flow-diagram algo-
rithms.

To make the optical interconnection network sys-
tem easily understood, we first define and discuss the
construction and characteristics of the one-dimen-
sional (1-D) and two-dimensional (2-D) butterfly inter-
connection networks by using the mathematical ex-
pressions and matrices corresponding to 1-D and 2-D
FFT's, respectively. Then in Section 2 we study the
relationships between the 1-D and 2-D butterfly
networks and the conversion from the 2-D butterfly
network to the 1-D network. Next, in Section 3 we
study and discuss the construction of flow diagrams
of the FFT's. In Section 4 we propose and study a
2-D OBNH system for implementing the FFT's. In
Section 5 we provide the architecture and pattern
designs of the binary phase diffraction gratings
(BPDG's) and masks used in the system. Finally in
Section 6 we give our summary and conclusions.

2. One- and Two-Dimensional Butterfly
Interconnection Networks

The 1-D butterfly network is the primary model for
studying and discussing all butterfly networks. The
topology of a multistage network is defined by three
physical parameters: (1) the type of switching ele-
ment comprising a node, (2) the number of node
stages, and (3) the link interconnections provided
between adjacent node stages.1920 Both fully con-
nected butterfly networks with N nodes and fully
connected data manipulator networks with N nodes
require log + 1 node stages, in which each node
stage is labeled in sequence from 0 to logsN. The
input (leftmost) node stage is assigned label 0, and the
output (rightmost) node stage is assigned label log 2.

Each switching element (node) in a particular node
stage is assigned a unique physical address with an
address bit (Ki-1, K 2, . . , KO), where i =

log2. The physical address identifies the element's
relative location within the node stage, with the top
node labeled as 0 and the bottom node labeled as
N - 1.20,21

In the 1-D butterfly networks a pair of interconnec-
tions provided by the links within link stage i can
be mapped as Boand Bi. These points represent
the straightforward connection and the butterfly
connection, respectively,21 and they map a node
(Ki-l ... , Ki, ... , Ko)i in node stage i two nodes in
node stage i + 1. The relationships between the
node in node stage i and the two nodes in node stage
i + are described by

B9°(Ki-A-i2, . ,Ki, **,KO)

=(KiKi-1, . . . , Kl-i,,, . . . , O,. . . , K1_i_1) ... Kl)i+l

for link (Ki-1Ki_2, . . ., Kl)i+ 0 i < 1, (1)

Bi (Ki-A-2 *, Ki, * ,Ko)
=(KiKi-1, . . . , Kl-i+,, . . . , 1, . . . , K1_i_1, *.*.* Kl)i+l

for link (Ki-.Ki 2, .. . , Kl)i+ 0 i < 1. (2)

Then for the (i + 1)th stage the link relationship of
Ki+1 is shown by

Kg°+1 = Ki, Ki = O. 1, . ,N - 1, 0 i < 1, (3)

Ki + N/2i [(j - 1)N/2i < Ki+1 S jN/2i]

Ki - N/2i [jN/2i Ki+1 < jN/2i]

(j = 1, 2 ,..., 2i). (4)

In terms of the above butterfly network theorem, we
can attain a butterfly network with N = 8 size and =
3 link stages, as shown in Fig. 1.

As described in the introduction, almost all optical
information processing is performed in 2-D parallel
forms and requires 2-D optical interconnections; i.e.,
the images and/or signals to be processed are gener-
ally placed on 2-D planes. Figure 2 is a multistage
2-D butterfly interconnection network with N x N =
4 x 4 size. In the 2-D butterfly network the number
of fan-in or fan-out lines on every node is four (rather
than two). Thus a multistage 2-D butterfly intercon-
nection network with N x N nodes has n = log N =
log2, which corresponds to a 1-D network. In this

i=0 1 2 3

2 tge stge stge
Fig 1. 1- butrlntokwihN=8

5 

66

stage0 stagel stage2
Fig. 1. 1-D butterfly network with N = 8.
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Fig. 2. 2-D butterfly network with N x N = 4 x 4.

paper we consider a 2-D butterfly interconnection
network with 4 x 4 nodes, as shown in Fig. 2 (i.e.,
n = log24 = 2), and we represent the 2-D patterns of
node distribution on planes A, B, and C as the matrix
forms described in Table 1. Figure 2 and Table 1 are
the mathematical definitions of the 2-D butterfly
interconnection network. To make the correspond-
ing relationship of the 2-D and 1-D butterfly intercon-
nection networks clear, we derive the transformation
pattern for changing the 2-D butterfly network into a
the 1-D network, as shown in Fig. 3. It is easily
noted that the 1-D network in Fig. 3 is composed of
two stages of different 1-D interconnection networks,
and each of the two stages has its own construction
features, which are helpful for understanding and
applying the 2-D butterfly interconnection networks.
The 2-D butterfly networks and the transformations
from 2-D to 1-D networks are different from the
counterparts of crossover and perfect-shuffle net-
works in their construction and properties. 21 22

Therefore the above discussion about 1-D and 2-D
butterfly interconnection network theory is a founda-
tion for the following description about the applica-
tions of the butterfly interconnection networks.

Table 1. Elements from Matrix A to Matrix B to Matrix C of Fig. 2

Matrix A

A(O, 0)
A(1, 0)
A(2, 0)
A(3, 0)

A(O, 1)
A(1, 1)
A(2, 1)
A(3, 1)

A(O, 2)
A(1, 2)
A(2, 2)
A(3, 2)

A(O, 3)
A(1, 3)
A(2, 3)
A(3, 3)

Matrix B

B(O, 0)
B(1, 0)
B(2, 0)
B(3, 0)

B(O, 1)
B(1, 1)
B(2, 1)
B(3, 1)

B(O, 2)
B(1, 2)
B(2, 2)
B(3,2)

B(O, 3)
B(1, 3)
B(2, 3)
B(3, 3)

Matrix C

C(O, 0)
C(1, 0)
C(2, 0)
C(3, 0)

C(O, 1)
C(1, 1)
C(2, 1)
C(3, 1)

C(0, 2)
C(1, 2)
C(2, 2)
C(3, 2)

C(0, 3)
C(1, 3)
C(2, 3)
C(3, 3)

Table 2. Corresponding Relationships of Table 1

From Matrix A to Matrix B

A(O, 0) B(O, 0), B(2, 0), B(O, 2), B(2, 2)
A(1, 0) B(1, 0), B(3, 0), B(1, 2), B(3, 2)
A(2, 0) B(2, 0), B(O, 0), B(2, 2), B(O, 2)
A(3, 0) B(3, 0), B(1, 0), B(3, 2), B(1, 2)
A(O, 1) B(O, 1), B(2, 1), B(O, 3), B(2, 3)
A(1, 1) - B(1, 1), B(3, 1), B(1, 3), B(3, 3)
A(2, 1) - B(2, 1), B(O, 1), B(2, 3), B(O, 3)
A(3, 1) -> B(3, 1), B(1, 1), B(3, 3), B(1, 3)
A(O, 2) - B(O, 2), B(2, 2), B(O, 0), B(2, 0)
A(1, 2) - B(1, 2), B(3, 2), B(1, 0), B(3, 0)
A(2, 2) B(2, 2), B(O, 2), B(2, 0), B(O, 0)
A(3, 2) - B(3, 2), B(1, 2), B(3, 0), B(1, 0)
A(O, 3) - B(O, 3), B(2, 3), B(O, 1), B(2, 1)
A(1, 3) B(1, 3), B(3, 3), B(1, 1), B(3, 1)
A(2, 3) - B(2, 3), B(O, 3), B(2, 1), B(O, 1)
A(3, 3) - B(3, 3), B(1, 3), B(3, 1), B(1, 1)

From Matrix B to Matrix C

B(O, 0) C(, 0), C(1, 0), C(O, 1), C(1, 1)
B(1, 0) C(1, 0), C(0, 0), C(1, 1), C(0, 1)
B(2, 0) C(2, ), C(3, ), C(2, 1), C(3, 1)
B(3, 1) C(3, 0), C(2, 0), C(3, 1), C(2, 1)
B(O, 1) C(, 1), C(1, 1), C(O, 0), C(1, 0)
B(1, 1) C1, 1), C(, 1), C(1, O), C(, O)
B(2, 1) C(2, 1), C(3, 1), C(2, 0), C(3, 0)
B(3, 1) - C(3, 1), C(2, 1), C(3, 0), C(2, 0)
B(O, 2) * C(0, 2), C(1, 2), C(0, 3), C(1, 3)
B(1, 2) Q C(1, 2), C(0, 2), C(1, 3), C(0, 3)
B(2, 2) 2 C(3, 2), C(3, 2), C(2, 3), C(3, 3)
B(3, 2) Q C3, 2), C(2, 2), C(3, 3), C(2, 3)
B(O, 3) * C(0, 3), C(1, 3), C(0, 2), C(1, 2)
B(1, 3) C(1, 3), C(0, 3), C(1, 2), C(O, 2)
B(2, 3) C(2, 3), C(3, 3), C(2, 2), C(3, 2)
B(3, 3) C(3, 3), C(2, 3), C(3, 2), C(2, 2)

3. Butterfly Interconnection Networks
in Fast Fourier Transforms

As we have shown, optical information processing
includes spectral analysis, spatial and spectral filter-
ing,2"17 convolution and correlation,2-5 feature extrac-
tion, edge enhancement, and pattern recognition.
There are two major types of optical information-
processing systems that depend on the light sources.
One is incoherent light processing, and the other is
coherent light processing. Figure 4 is a common
optical information-processing system that is suitable
for both coherent and incoherent sources. In coher-
ent sources, input signals are illuminated by coherent
light. This optical information-processing system is
a 4-f configuration, where P1 is the input plane, P2 is
the spectrum plane, and P3 is the output plane.
With the input signal function in P1 as f (x, y), the
reference, or filtering, signal function as h(x, y), the
spectrum function in P2 as P(u, v), and the output
signal function as g(x', y'), there are some optical
transformation relations corresponding to various
types of optical information processing. For spec-
trum analysis, only the first half of the system
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Fig. 3. Transform pattern for changing the 2-D butterfly network
shown in Fig. 2 into a 1-D network.

(between P1 and P2) in Fig. 4 is required, and the
relation is given as2 22

P(u, v) = F[ f (x, y)]. (5)

A spectrum detector is required at P2. For recogni-
tion systems based on both matched filtering and
correlation, the spectrum distribution P(u, v) in plane
P2 is the product of Fourier transformation of the
processed signal (or image) F(u, v) = F[f (x, y)] with
the conjugate of the Fourier transformation of the
reference signal (or image) H(u, v) = F[h(x, y)], which
can be expressed asl-6"16

P(u, v) = F(u, v)H(u, v)*

Then at output plane P3 , output function g(x', y'
the inverse Fourier transformation of spectrum fu
tion P(u, v):

g(x', y') = F-'[P(u, v)].

Y
P1 V

f f

P2 U f L2

ff

It is necessary to explain that for both the matched-
filtering method and the correlation (or joint-transfor-
mation correlation) method, there are two ap-
proaches of adding the reference function h(x, y) or its
Fourier transformation spectrum H(u, v).'-6 The
first method is frequency-domain synthesis, in which
a complex coherent optical information-processing
spatial filter of the frequency spectrum is introduced
in the frequency domain at plane P2, and the filtering
for the correlating operation is performed directly on
the frequency-plane. Second is spectral-domain syn-
thesis, in which a complex or real reference function
is introduced in the input spatial domain, and the
filtering, or correlation, operation is directly per-
formed on the processing signal, or input plane.
Therefore a general optical information-processing
system is a one-stage Fourier transformation, as
described in Eqs. (5) and (6), and also one-stage
inverse Fourier transformations, as described in Eq.
(7). Thus the research on the FFT algorithms in
optical information processing has advanced
greatly."'10

We first consider the discrete Fourier transforma-
tion of a 1-D series

N-1
X(m) = X(n)exp(-j27rmn/N).

n=O
(8)

Let W = exp(-j2'r/N); we separate the series X(n)
into two parts:

X1(n) = X(n), n = 1, ... ,N/2 - 1,
X2(n) = X(n + N/2), n = 1, ... ,N/2 - 1. (9)

Substituting Eq. (9) into Eq. (8), we obtain

N/2-1

X(m) = j: [X1(n) + (-1) X2(n)]WN,
n=O(6)

(10)

use N = - 1 and Wyn = Wmn/ 2. We canwhere we Wse /2 N/2 

also separate Eq. (10) into two parts according to
whether m is even or odd:

(7) (a) If m is even, i.e., m = 2k, we have

Y3

Fig. 4. General optical information-processing system: P, in-
put plane; P2, spectrum plane; P3 , output plane; FTL, FTL2, two
Fourier-transform lenses; f's, focal lengths.

N12-1

X(2k) = I [Xl(n) + X2(n)]Wk/

k = m/2 = 0, 1, 2,..., N/2 -1.

(b) If m is odd, i.e., m = 2k + 1, we have

N/2-1

X(2k + 1) = E {[X1(n) -X2(n)1Wk1Wk/2

k = (m - 1)/2 = 0, 1, 2, ... , N/2 -1.

(11)

(12)
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1-D butterfly network signal-flow diagram for 1-D FFT's;

x(mn)
U N/2-1

n

x3(m,n)

N-1

x4 (m,n)

I

x1 (m,n) x2(mn)

________ (~~~~~)
m

Fig. 7. Separated pattern of a 2-D FFT data array with N x N
points; the four subarrays are represented by Xl(m, n), X2(m, n),
X3(m, n), andX4 (m, n).

The data flow graph of the 1-D FFT from Eqs. (11)
and (12) can constitute a 1-D butterfly interconnec-
tion network with the weight factors. Figure 5 is the
1-D butterfly network with size N = 8.

Almost all optical information processing is per-
formed in 2-D form. Therefore, studying the 2-D
FFT's and building the 2-D optical interconnection
networks is a very significant project. For a 2-D
general series X(m, n), we have

N-1 N-1
X(u, v) = E X(m, n)exp[j2,rr(um + vn)/N].

n=O m=O

(13)

Its FFT can be implemented by performing one 1-D
FFT twice. That is, the 2-D signal flow graph can be
represented as a set of 1-D transformations on the
rows followed by a set of 1-D transformations on the
columns.'7"8 As shown in Fig. 6, the size of this
network is N x N = 4 x 4, and the number of link
stages is log 2NxN = 2 logN, clearly twice that of the 1-D
FFT. This interconnection is certainly not suitable
for optical interconnections because the number of
link stages is too large, and optical interconnections
cannot simultaneously implement all the operations
within each link stage in parallel. Therefore we
want to build the 2-D butterfly interconnection net-

Fig. 6. 2-D butterfly network signal-flow diagram for 2-D FFT's;
N x N =4 x 4.

work shown in Fig. 2, in which there are four fan-in
and four fan-out lines on each point.

Starting with Eq. (13), we separate the N x N
points of the 2-D FFT into four parts, as shown in Fig.
7, and these four parts are described as

Xl(m, n) = X(m, n),

X2(m, n) = X(m + N/2, n),

X3(m, n) = X(m, n + N/2),

X4(m, n) = X(m + n/2, n + N/2), (14)

where (m, n) = 0, 1, 2,. . ., N/2 - 1. Thus Eq. (13)
can be represented as

X(u, v) = ES [Xl(m, n) + (-1)uX2(m, n)

+ (-1)vX3(m, n) + (-1)u+vX4(m, n)]

W/m2WW4/2, (15)

where we use WN = -1, w2m = W /2 and WV=
WW/2 

(a) If both u and v are even, i.e., u = 2i and v = 2j,
then

X(2i, 2j) = 2: [Xl(m, n) + X2(m, n) + X 3(m, n)

+ X 4(m, n)]W; 2 WYi/2, (16)

where i =u/2= 0, 1,2, . . .,N/2 - landj =v/2 = 0,
1, 2, . . ., N/2 - 1.

(b) If u is even and v is odd, i.e., u = 2i and v =
2j + 1, then

X(2i, 2j + 1) = 7-7- {[X1(m, n) + X2 (m, n) - X3 (m, n)

- X4(m, n)]W}W;/2W 2' (17)

where i = u/2 = 0, 1, 2, .. .,N/2 - 1 and j =
(v - 1)/2 = 0, 1, 2,. . ., N/2 - 1.

(c) If uisoddandviseven,i.e.,u = 2i + landv =
2j, then

X(2i + 1, 2j) = =2 [Xl(m, n) - X2(m, n) + X3(m, n)

- X4(m, n)]WR1WM2WN1/2, (18)
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Fig. 8. 2-D butterfly network signal-flow for 2-D FFT's with N x N = 8 x 8 points.

where i = (u - 1)/2 = 0, 1, 2, . ., andj = v/2 = 0, 1,
2, .. ., N/2 - 1.

(d) If both u and v are odd, i.e., u = 2i + 1 and v =
2j + 1, then

X(2i + 2j, + 1)

= 1E {[Xl(m, n) - X2(m, n) - X3(m, n) + X 4(m, n)]
Wm+n1Wmi 7nj

N JN12 2) (19)

where i = (u - 1)/2 = 0, 1, 2 ... , and j = (v - 1)/
2 = 0,1,2,...,N/2 - 1.

Therefore the 2-D FFT can be implemented in the
2-D butterfly network signal flow diagram as shown
in Fig. 8, in which coefficients WJm and WV are
determined according to Eqs. (16)-(19). This 2-D
butterfly flow graph is composed of 8 x 8 nodes in
each node stage. With the 2-D butterfly signal flow
diagram defined by Eqs. (16)-(19), we calculate the
correlation of the two similar Chinese words that are
shown in the right top corner of Fig. 9. As shown, a
computer simulation is obtained in which one word
pattern is recognized as signal f (x, y) and the other as
reference signal h(x, y). Figure 9 is the self-correla-
tion result g(x', y'). Therefore we study and build a
2-D system for implementing the FFT-based optical
information processing in Section 4.

4. Optical Butterfly Network System Design

With the developments of both optical information
processing and computer data processing, hybrid
optics and computer information-processing hard-

ware systems have been proposed and researched.23 24

However, they were based on the combination of
optical information-processing systems and elec-
tronic computers in which opto-electronic interfaces
and analog-to-digital transformations were required.
Both the picking up of image samples and the process-
ing of data were performed in series. The success
and development of optical interconnection networks,
technology, and applications make it possible to study
and build the OBNH system for optical information
processing on the basis of current optical interconnec-
tion technologies. 1'-14"16

The binary phase diffraction gratings (BPDG's)
designed to split a single light beam into a specific

the zero'th signal

(DC term)

correlation
signal 

r0 t%

Fig. 9. Result of a computer simulation of the correlation of two
similar Chinese words through the 2-D butterfly signal-flow net-
work with N x N = 128 x 128 points.
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BPDGU BPDG1J BPDG2 BPDG3
MaskO Maskl Mask2 Mask3

0 stage stage 1 stage 2

Fig. 10. Arrangement of the 2-D butterfly interconnection with
BPDG's and masks.

number of equal intensity diffraction orders have
been developed not only to implement free-space
optical interconnections with particular construc-
tions' 4 but also to perform coherent laser beam
additions.25 27 Because various types of optical infor-
mation processing based on optical Fourier transfor-
mations use coherent light conditions, the OBNH
system for performing FFT algorithms can be oper-
ated under coherent conditions. The 1-D and 2-D
BPDG's have demonstrated their own advantages in
implementing manipulator and butterfly networks.
These two types of networks are equivalent in topol-
ogy and similar in construction.'4 2l So it is reason-
able to use BPDG's and masks to construct the 1-D
and 2-D butterfly interconnection networks. Figure
10 is the arrangement constructed by using BPDG's
and masks, in which BPDG's have functions of both
beam splitting and coherent addition. A 2-D OBNH

Mirror

Filteri

BPDG

BPD P DG PD

BPDG

system performing 2-D FFT-based optical informa-
tion processing as shown in Fig. 11 is suggested.
The system is composed mainly of two multistage 2-D
butterfly networks (each with 8 x 8 nodes) and a
spectrum treating subsystem. In Fig. 11 the butter-
fly network on the left is used for performing optical
FFT's, and the one on the right is used for optical
inverse FFT's. If input images or signals are placed
on input plane P1, spatial spectrum patterns can be
obtained on spectrum plane P2. So, in terms of the
various requirements for the different types of optical
information processing, various frequency-spectrum
treating methods can be adopted in the spectrum
analysis subsystem. For example, for matched filter-
ing and feature extraction, the filters with various
functions can be placed in the spectrum analysis
subsystem. For optical pattern recognition and tar-
get tracking, the frequency spectra of the reference
images or signals can also be inputted directly into
the spectrum subsystem, and the required optical
images or signals can be obtained on the output plane
P3. Because the output signals throughout the inter-
connection network system are still discrete points,
the output results can be recorded and analyzed by
using detectors. Therefore the OBNH system for
optical information processing can be used not only to
operate numerical calculations but also to perform
practical optical experiments. For example, as shown
in Fig. 9, because the zeroth-order (dc term) intensity
is higher than that of correlation, which seriously

Filter2
Fig. 11. Schematic configuration of the optical butterfly interconnect network hardware system for FFT-based information processing.
Two multistage butterfly networks are used: the one on the left performs the FFT, and the one on the right performs the inverse FFT,
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BPDG BPDG 1PDG

Fig. 12. Result of a computer simulation of the correlation of two
similar Chinese words according to the butterfly interconnect
network hardware system as shown in Fig. 11, obtained by
disconnecting link lines that relay the zeroth-order (dc-term)
background information.

influences the observation of correlation signals, en-
hancing the correlation signal and controlling the
zeroth-order background intensities constitutes a
problem that optical information-processing experi-
mentation often focuses on. This OBNH system
would also be useful in experimentation with pattern
recognition and target tracking based on Fourier-
transform correlation. However, with the OBNH
these problems can be resolved by disconnecting the
link lines that relay the zeroth-order background
information at the final link stage of the latter
network in Fig. 11. Figure 12 is the result of
computer simulation with the OBNH system ob-
tained by disconnecting the link lines that relay the
zeroth-order background information (shown in Fig.
9). Obviously, there are only correlation signals;
there is no the zeroth-order background signal in Fig.
12.

5. Binary Phase Diffraction Grating Features
and Mask Patterns

In the OBNH system there are two multistage butter-
fly networks, one for the FFT's and one for the
inverse FFT's. We are considering FFT's of size 8 x
8 points. Since they are of this size, they require
networks containing three link stages, and in each
link stage a 2-D BPDG is required. This totals to six
BPDG's and correspondingly to six masks for the
entire system, as shown in Fig. 11. The BPDG's
must serve a double function for laser beams. First,
they must split a single beam into two equal (order 0
and 1) intensity diffraction orders. Second, they
must perform the operation of coherent addition of
the zeroth-order and the positive/negative first-order
diffraction beams. To achieve these functions, the
three BPDG's should all be equivalent in structure.
If this condition is met, addition of the zeroth-order
beam with the positive/negative first-order beams
can be performed in the first-order diffraction angle.
The interconnections for various link stages can be
designated by controlling the distances (the link

Fig. 13. Relationship of distance Li between adjacent BPDG's
with diffraction angle Oo.

lengths) L between adjacent BPDG's, as shown in Fig.
13. If, for a link stage i, the distance between two
adjacent beams is W0 and the link length is Li, then Li
(i = 0, 1, . . ., logM m- 1) can be defined as

NW
Li = 2 i+1 tan 0o (20)

The transmittance of the grating can be expressed
as a superposition of plane waves corresponding to
the diffraction orders of the grating:

t(X) = a exp(j4,)exp(jnax),
n=O

(21)

where an and 4, nare the magnitude and phase of the
nth beam component and at is proportional to the sine
of the angle (00) between the diffraction orders. The
gratings are designed such that an a for the zeroth
order and the positive/negative first orders; then

a = a0 sin 00, ot0 = const.,

f(x) = a0 [exp(j4 0 )][1 + exp(jxua0 sin 00)].

(22)

(23)

In Eq. (23) the phase difference between the diffrac-
tion orders (orders 1 and 0) is X sin 0. So, according
to Figs. 5, 7, and 8, the value of a0 can be chosen to
satisfy the equation exp(No sin 00) = [exp(-j2,rr/N)].

Coherent addition of beams can be accomplished by
operating this grating in reverse. This is because
the phase of the zeroth order of the grating in the ith
node stage is the inverse of the positive/negative first
orders of the grating in the (i + 1)th node stage.25-27

The interference patterns of these two beams in the
plane of the grating is then given by

E(x) = Y exp(-j(,,)exp(-jnax)

= exp(-jl,,)[1 + exp(-jxa 0 sin 00)]. (24)

The amplitude of the light after it passes through the
grating is given by the product of Eqs. (23) and (24) if
we consider that kl = +O. If the three beams have
the same intensity on each node (for a 2-D n-stage

10 December 1993 / Vol. 32, No. 35 / APPLIED OPTICS 7191
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Fig. 14. Patterns of six masks used in the optical butterfly
network system shown in Fig. 11: (a) the pattern of Mfo and Mf2,
(b) the pattern of Mfj and Mil, and (c) the pattern of Mf2 and
Mfo. In all three figures, phase delays per row/column are
denoted by circles along, the direction and within the range shown
by arrows. Phase increments per row/column are denoted by
squares and circles in the areas not indicated by arrows but that
occur in the same direction. The phase delays/increments are
Tr/4 for (a), 7r/2 for (b) and r/1 for (c).

butterfly network), only four out of nine beams are
used, which is inefficient. This can be overcome by
designing the grating to have only the zeroth order
and either the positive-first order or the negative-first
order. The patterns of masks Mfo, Mfl, and Mf2 in
the former butterfly network and Mio, Mil, and Mi2 in
the latter network are used to select the four diffrac-

tion beams that constitute the 2-D butterfly network.
The patterns of Mfo, Mfl, and Mf2 in link stages 0, 1,
and 2 are shown in Figs. 14(a), 14(b), and 14(c),
respectively, while Mio, Mil, and Mi2 are the same as
Mf2 , Mfl, and Mfo, respectively. Within each element
(node) in Fig. 14, each circle represents a straightfor-
ward link line from the zeroth-order diffraction beam,
the two squares represent the butterfly interconnect
lines from the first orders along the x and y coordi-
nates, respectively, and each triangle represents the
butterfly interconnect line from the first order along
the diagonal orientation. In terms of Figs. 5 and 8,
the nodes in Fig. 14 whose masks are marked in black
frames are required to have phase compensation
along both the x and y orientations. The compen-
sated amounts of phases in the different masks are
determined by the weighting functions in the butter-
fly interconnect flow graphs, as shown in Figs. 5 and
8. However, the compensations in the two networks
for performing the FFT's and the inverse FFT's are
in reverse. That is, if the phases in the former
network are compensated, the phases of counterparts
in the latter network are delayed proportionately.

6. Summary, Future Work, and Conclusions

For our study of 1-D and 2-D butterfly interconnec-
tions and networks in constructions, we first demon-
strated the possibility of building the OBNH system
for implementing various types of optical information
processing, including image processing and signal
processing. Then we briefly studied and analyzed
key devices such as BPDG's and masks in theory and
in structure. With the OBNH system, numerical
computations (or analyses) and experimental studies
can be performed simultaneously in theory, and the
problems such as the zeroth-order (dc term) back-
ground intensity can be effectively cancelled, which
enhances the correlation signal. This is verified by
computer simulation. In theory the OBNH systems
based on other transformations such as the Walsh-
Hadamard transformation and rapid transforma-
tion,17"18 as well as the unification OBNH systems for
optical-digital computing28 and analog computing
and information processing, can also be accomplished.
In future research we will study and build an OBNH
system, starting with BPDG's masks. Then we will
add system spatial light modulators and symmetric
self-electro-optic-effect devices to increase the func-
tions of the system in the experiment. Once this is
accomplished, the benefits of optical information
processing will be within our reach.

The authors thank Hong-Jie Xu for his assistance
and support during this work.
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