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The carry-free property of modified signed-digit addition is discussed, and a space-position-logic-encoding
scheme is proposed, which not only makes best use of the convenience of binary (0, 1) logic operation but is
also suitable for the trinary (1, 0, 1) property of modified signed-digit digits. Based on the space-
position—logic-encoding scheme, a fully parallel modified signed-digit adder and subtracter is built by use
of optoelectronic switch modules and butterfly interconnections; thus an effective combination of a
parallel algorithm and a parallel architecture is implemented. The effectiveness of this architecture is
verified by both simulation and experimental results.
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1. Introduction

There are two options to develop parallel digital
optical computing systems: one is to research the
carry-free parallel algorithm, the other is to research
the optical implementing architecture. Of course,
the best selection is an effective combination of these
two options. In algorithm research, binary, residue,
and modified signed-digit (MSD) algorithms have
been researched as possible selections, but they all
have their own advantages and limitations.”7 In
digital optical computing, the main optical intercon-
nections include butterfly,2389 crossover,!? and per-
fect shuffle,!! which can be implemented with fiber
interconnection technology as well as free-space opti-
cal interconnections such as grating interconnections.
Among the optical interconnections, the butterfly has
been demonstrated to be the most regular and the
easiest to implement by parallel optical ap-
proaches.2®12 In our previous research we have
proposed the butterfly interconnection systems for
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optical parallel addition and subtraction based on the
binary algorithm. However, because of the carry of
the binary algorithm, these parallel structures are
really partially parallel systems; i.e., their computing
speed is still dependent on the number of operand
bits. Thus fully parallel computing systems require
parallelism in both the algorithm and the architec-
ture, and they require effective combination of the
parallel algorithm and the parallel architecture, which
requires an effective encoding scheme.

The MSD algorithm is an effective carry-free algo-
rithm, and symbolic substitution is an optical parallel
implementing approach; thus an optical MSD parallel
computing system based on symbolic substitution is a
typical example of a combination of a parallel algo-
rithm and a parallel implementing approach.5%13-15
However, in the parallel optical computing systems,
in terms of the proposed optical pattern encoding and
optical polarization encoding for symbolic substitu-
tion, the space size taken by each operand bit cannot
be made very small, which limits the miniaturization
and integeration of MSD computing systems. In
addition, both substitution rules and optical ap-
proaches for implementing the rules are generally
difficult, which limits the further development of
multibit parallel MSD optical computing systems.
The purpose of this paper is to discuss the implemen-
tation of fully parallel optical addition and subtrac-
tion based on the effective combination of the MSD
algorithm and the butterfly interconnection architec-
ture by use of a space-position-logic-encoding (SPLE)
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Fig. 1. Truth tables of the first-step operation of MSD addition:
(a) for transfer T, (b) for weight W.

scheme, which exploits both the carry-free property
of the MSD algorithm and the convenience of binary
logic operation with optoelectronic logic technology.
In Section 2 the advantages of the MSD algorithm are
discussed. In Section 3 a SPLE scheme is proposed
and studied, and the truth tables of MSD addition
based on the SPLE are given and discussed. On this
basis the butterfly interconnection architecture of the
MSD adder and subtracter is studied in detail, and its
effectiveness is verified by both the simulation results
and the experimental results in Section 4. Finally,
in Section 5 a summary and conclusions are given.

2. Advantages of the Modified Signed-Digit Algorithm
In this section we briefly review the key concepts of
the MSD addition and subtraction and demonstrate
the carry-free property of MSD addition. A more
detailed discussion may be found in Refs. 6, 7, and
13-15. A MSD number is a special state of a signed
digit. For example, when the radix is 2, the MSD
number Dygp can be written as

Dysp = [1, 0, T]: (1)

where 1 represents —1. Then each decimal number
can be represented in the MSD number system by the
coefficients of the polynomial:

Dy =[1,0,1)2* 1+ --- +[1,0, 1]2

+ -0+ [1,0,1]20. (2)
For two MSD numbers, Xysp (=X,-1,. . ., X, . . ., X0)
and Yysp (=Yu-1,...,Y; ..., Yy), the addition can be
performed through a three-step operation. At the
first step, X; + Y; = 2T, + W, is performed at the ith

digit fori = 0,1,...,n — 1, where W; and T, are
called the weight digit and the transfer digit, respec-
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Fig.2. Truth tables of the second-step operation of MSD addition:
(a) for transfer T", (b) for weight W',
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Fig. 3. Truth tables of the third-step operation of MSD addition
for producing the final sum S.

tively. These digits assume the values

(1 forX, +Y, =1
W;={0 for|X;+7Y;|=1,
1 forX,+Y,=1
(1 forX;+Y,>1
T, =40 forX;+Y, =0 (3)
\T forX,+Y; <1

At the second step, W; + T, = 2T, + W is
performed to produce another pair of weight and
transfer digits W} and T}, :

(1 forW,+ T, =1
Wy =10 for |[W;+T;|=1
1 forW,+ T;=1
[1 for W, + T; = 2
T,., =10 for|W,+ T;| =2 (4)
|11 forW; + T; = -2

The third step generates the final sum digit S;:
1 forW+T/ >1
0 forW/ + T/
1 forWy +T' <

Si = W’i, + Ti, = (5)

]
| ©

To demonstrate the carry-free property of MSD
addition, we perform the derivation as follows. In
terms of the third step and Eq. (5) it can be noted that

Fig. 4. Butterfly interconnection architecture for implementing
the three step operations of MSD addition of two 3-bit digits.
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Fig. 5. Space-position-logic-encoding (SPLE) scheme in which
three space position codes, A, B, and C(ora, b, and c), stand for 1, 0,
and 1, respectively.

the sum S, is a function of only W’ and 7'}
S; = f(W3, T3). (6)
In terms of the second step we can obtain
Wi+ Ty =2T; + Wiy (7

In terms of the second step and Eq. (4), W} is a
function of only W; and T; in terms of Eq. (7), T';is a
function of only W,_; and T;_;; then according to Eq.
(6), we have

S; = f(W;, Tj; Wiy, Tima)- (8)

In terms of the first step we have
X 1 +Y_=2T; + W_,, (9a)
X, o+t Y, 5=2T; 1 + W, (9b)

Then according to Eq. (3), W; is a function of only X;
and Y;: according to Eq. (9a), both T; and W;_, are
the functions of X,_; and Y;_; according to Eq. (9b),
T;_, is a function of only X;_; and Y;_,. Thus accord-
ing to Eq. (8), we have

S; = f(Xia Y X, Yiog; Xico, Yi-2)- (10)

Namely, the sum at the ith bit S; is related only to the
operand bits of the ith bit, the (i — 1)th bit, and the
(i — 2)th bit, and the carriers are limited within these
three operand bits.

In terms of Egs. (3), (4), and (5) we can obtain the
truth tables for the three step operations of MSD
addition as shown in Figs. 1, 2, and 3, respectively.
In terms of the three step operations of MSD addi-
tion, the MSD addition of two 3-bit digits can be
depicted in the butterfly interconnection architecture
as shown in Fig. 4, where X (= XpX:X,) and Y

T W
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Fig. 6. Truth tables of the first-step operation of MSD addition
represented by the SPLE scheme: (a) for transfer T, (b) for
weight W.
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Fig. 7. Truth tables of the second-step operation of MSD addition
represented by the SPLE scheme: (a) for transfer T", (b) for
weight W'.

(= YY1 Y,) are augend and addend, respectively, and
Z (= Z3ZyZ1\Z,) is the final addition result.

3. Space-Position-Logic-Encoding Scheme

As described above, the MSD algorithm is different
from the binary algorithm in form. The binary
algorithm has only the two digits of 0 and 1; thus in
an electronic computer the higher and the lower
voltages are represented by 1 and 0, respectively,
which is a successful encoding scheme. In the same
manner, in optical computing the higher and the
lower light powers or a light signal and a nonlight
signal generally are represented by 1 and 0, respec-
tively.16-18 At the same time, because of optical
properties and the symbolic substitution theorem,
pattern encoding, polarization encoding,”!31419 and
other encoding schemes20:2! occur successively. The
MSD algorithm is emphasized since has been pro-
posed as an important algorithm,® and both pattern
encoding and polarization encoding are selected and
studied for implementing MSD systems.?? These
two encoding schemes have their own limitations in
implementing multibit calculations. In this section
we propose a SPLE scheme as shown in Fig. 5, in
which three different space positions, A, B, and C (or
a, b, and c), are used to represent 1, 0, and 1 of MSD
digits in which three light-emitting diodes (LED’s) or
laser diodes (LD’s) are placed at A, B, and C (or a, b,
and c), respectively. Thus these three LED’s or LD’s
at A, B, and C (or a, b, and c) represent only one MSD
bit; namely, only one LED or LD has a light signal,
and a light signal at a different position of the ith bit
represents a different value. For example, the light
signal of the LED or the LD at position A of the X; bit
represents X; = 1, and at the same time, the LED’s or
the LD’s at positions B and C of the X; bit have no
light signals; the light signal of the LED or the LD at
position B of X; bit represents X; = 0, and at the same
time, the LED’s or the LLD’s at positions A and C of
the X; bit have no light signals; the light signal of the
LED or the LD at position C of X; bit represents X; =

S(=T)
alalal|b
bjlaj|b|ec

blecje
A B C

Fig. 8. Truth tables of the third-step operation of MSD addition
represented by the SPLE scheme for the final sum S.
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Fig. 9. Unitary detecting array to stand for all the truth tables of
MSD addition, where Gy, Gg, . . . , Gg are nine detecting elements.

1, and at the same time, the LED’s or the LD’s at
positions A and B of the X; bit have no light signals.
Thus each space position has two states, either
having a light signal or having no light signal, which
is similar to the logic operations of the binary algo-
rithm. Therefore we call the encoding scheme a
space-position-logic-encoding (SPLE) scheme. Then
with the SPLE scheme the truth tables for the three
operations of MSD additions as shown in Figs. 1, 2,
and 3 become the new forms as shown in Figs. 6, 7,
and 8, respectively. In terms of the truth tables as
shown in Figs. 6, 7, and 8, any table has nine states,
i.e., the nine combinations of the three digits (A, B,
and C) of augend X; and the three digits (a, b, and ¢) of
addend Y}, A, B, and C are arranged in arow, and a, b,
and c are arranged in a column, as shown in Figs. 6, 7,
and 8. Of course, each state is an AND result of two
digits.

4. Butterfly Architecture

In terms of all the truth tables of MSD addition
expressed in the SPLE scheme, any table has nine
states, and each state is an AND result of two digits
from a row and a column, respectively. Thus we can
use a unitary switch module including nine detecting
elements to stand for all the truth tables of MSD
addition, as shown in Fig. 9, in which all the detecting
elements (G, . . ., Gg) can be used for the nine states
of any truth table. It can be noted that G, is the
detecting element for the AND operation of A and a, G,
is the detecting element for the AND operation of A
and b, (3 is the detecting element for the AND
operation of A and ¢, and so forth, until Gy is the
detecting element for the AND operation of C and c.
To construct a corresponding interconnection archi-
tecture, we change a standard butterfly interconnect
unit, as shown in Fig. 10(a), into a new butterfly

interconnect unit, as shown in Fig. 10(b). It can
AR AB AB AB
(a) (b)

Fig. 10. Comparison of (a) a standard butterfly unit and (b) a
trimmed butterfly unit.
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Fig. 11. Correspondinvgr architecture of operands (A, B, and C; a, b,
and c) represented by a new butterfly interconnection.

easily be noted from Fig. 10 that, although the new
butterfly interconnection is different from the stan-
dard butterfly interconnection in form, interconnec-
tion rules of these two forms of butterfly are equiva-
lent. Namely, the new butterfly form as shown in
Fig. 10(b) but only holds the same advantages, i.e., all
the lines in the same angle are parallel, but can also
implement all the functions that the standard form as
shown in Fig. 10(a) can implement, with the addition
of one input node. Thus in the new butterfly form
the input end has one more node than the output end.
In addition, using the new butterfly form, we can
achieve the corresponding interconnection architec-
ture of operands (A, B, and C; a, b, and ¢), as shown in
Fig. 11. It can be noted with ease that the new
interconnection architecture can implement all nine
state combinations of AND operations of augend X; (A,
B, and C) and addend Y; (a, b, and c); i.e., the nine
combinations come from 11 pairwise combinations of
12 operand digits (double of A, B, Cand a, b, ¢). This
new butterfly interconnection architecture is both
regular and convenient for optical interconnection

@ 0O ® ONO)

© ©
Ié.

Fig. 12. Operation examples of a MSD adder and subtracter
constituted by trimmed butterfly interconnection: (a)X;=1,Y; =
0;(b)W; =1, T; =0;(c) W =1,T:=0. Hatched circles indicate
having light signals, and hollow civeles indicate having no light
signals.
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Fig. 13. Optoelectronic butterfly interconnection system for MSD
addition and subtraction, where May, Ma;, May, and Maj are four
switch modules for implementing logic operations and optical
signal arrangements; BN;, BNy, and BNj represent three stages of
multilayer butterfly interconnections, as in Fig. 11.

implementations such as fiber and grating intercon-
nections because all the interconnection operations
are performed between two adjacent nodes.

The AND results from the nine detecting elements
on the detecting planes of modules can drive several
LED’s or LD’s on the light-emitting planes, which
give light signals for the next operations. The ar-
rangement of all the possible light signals (A, B, and
C; a, b, and ¢) on the light-emitting planes of modules
is the same as that in Fig. 11, but only the detecting
elements receiving two light signals can perform AND
operations and make their LED’s or LD’s produce
light signals at the corresponding positions. Figures
12(a), 12(b), and 12(c) represent the operating ex-
amplesof X; =1and Y; =0, W;=1and T; = 0, and
W: =1 and T} = 0, respectively. Obviously each
MSD bit addition is completed through three stages of
the new butterfly interconnections and three opera-
tions, as shown in Fig. 12, where hatched circles
indicate having light signals and hollow circles indi-
cate having no light signals. For the first stage of
operations, as shown in Fig. 12(a),if X; = 1land Y; = 0,
ie., A; and b; have light signals, then only the
detecting element G, can receive two light signals and
perform AND operations and can drive its next-stage
LED’s or LD’s a of T';,; and C of W, for the next stage
of operations according to Figs. 6(a) and 6(b), respec-
tively. For the second stage of operations, as shown
in Fig. 12(b), if W; = 1 and T} = 0, i.e., A; and b; have
light signals, then only the detecting element G, can
receive two light signals and perform AND operations
and can drive its next-stage LED’s or LD’s b of T';,;

X + Y
1 0 1 1 0 1
0 O @ O OO e
1 OO0 e O @ O
IOO.(a)OO.

and A of W', for the next stage of operations according
to Figs. 7(a) and 7(b), respectively. For the third
stage of operations, as shown in Fig. 12(c), if W, =1
and T; = 0, i.e., A; and b; have light signals, then only
the detecting element G, can receive two light signals
and perform AND operations and can drive its next-
stage LED’s or LD’s a of S; of the ith bit according to
Fig. 8. The interconnections among all the operand
bits can be performed according to the standard
butterfly structure as shown in Fig. 4, which can be
implemented by use of electrical interconnection
within the switch modules. Therefore with the SPLE
scheme and two types of butterfly interconnections a
fully parallel MSD adder can be constructed by use of
three stages of optical butterfly interconnection and
four switch modules, Ma,, Ma;, Ma,, and Mas, which
can complete logic operations and signal arrange-
ments, as shown in Fig. 13. With the SPLE scheme
the MSD subtraction can also be performed as MSD
addition by use of the complement of the subtrahend,
i.e., with 1as 1, 1 as 1, and 0 as 0 in the subtrahend.
Therefore the MSD architecture in this paper is really
a fully parallel optoelectronic MSD adder and sub-
tracter.

For example, for the addition of 6 and 5, (6),, +
(8)10 = (11)y can also be written as (110)ygp +
(101)psp; the simulation input signals, the simulation
addition results, and their experimental results are
obtained as shown in Figs. 14(a), 14(b), and 14(c),
respectively, where filled circles indicate having light
signals and hollow circles indicate having no light
signals: Fig. 14(a) shows the pattern of input sig-
nals, Fig. 14(b) shows their addition results, and Fig.
14(c) shows their experimental results. It can be
noted from Figs. 14(b) and Fig. 14(c) that both
simulation and experimental results are (1 1 0 1)ysp
= (11),9, which are obviously correct. For the sub-
traction of 7 and 5, (7);9 — (8)15 = (2)1 can also be
written as (111)ygp — (101)ygp; the simulation input
signals, the simulation subtraction results, and their
experimental results are obtained as shown in Figs.
15(a), 15(b), and 15(c), respectively, where filled circles
indicate having light signals and hollow circles indi-
cate having no light signals: Fig. 15(a) shows the
pattern of input signals, Fig. 15(b) shows their subtrac-
tion results, and Fig. 15(c) shows their experimental

results. It can also be noted from Figs. 15(b) and
VA
i 0 1
., ® 00 1
O @ O o
' OO0 e 1
1 OO0 @& 1 E
(b) ()

Fig. 14. Simulation and experimental example of an MSD addition, (6)19 + (5)10 = (110)msp + (101)msp, where filled circles indicate having

light signals and hollow circles indicate having no light signals:

(a) input signals, (b) addition results, and (c) experimental results.
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Fig. 15. Simulation and experimental example of an MSD subtraction, (7)1 — (5)10 = (110)msp + (101)usp, where filled circles indicate

having light signals and hollow circles indicate having no light signals:

results.

15(c) that both simulation and experimental results
are (0 1 1 O)ysp = (2)10, which are obviously correct.

5. Summary and Conclusions

Development of fast computing systems could utilize
two approaches: one would research fast logic de-
vices, the other would arrange all the logic gates or
devices and make them perform in parallel. Because
the former is limited by materials of devices, the
latter is an important approach to developing optical
computing. The parallel systems including two ele-
ments: one is a parallel algorithm, the other is a
parallel implementing architecture. In this paper
we have studied the MSD algorithm, which is a
carry-free parallel algorithm, and we have discussed
the characteristics of three stages of operations of
MSD addition. Thus we propose a space-position—
logic-encoding (SPLE) scheme that not only makes
best use of the convenience of binary logic operation
but is also suitable for the trinary property of 1, 0,
and 1in MSD digits. According to th truth tables of
all the operations of MSD addition, we propose a
unitary optoelectronic switch module including nine
detecting elements (G, ..., Gg) to implement nine
AND operations of any truth table. To produce nine
combinations of two groups of MSD operands in each
bit, we change a standard butterfly interconnection
into a new form, and on this basis we build a butterfly
architecture of an optically fully parallel MSD adder
and subtracter. This butterfly network is two dimen-
sional; one dimension is a standard form for imple-
menting the interconnection among operand bits,
which is completed electrically within switch mod-
ules, and the other dimension is a new butterfly form
for implementing the interconnection of two groups
of operand digits in one bit, which is completed
optically. Finally, the simulation and the experimen-
tal results of MSD addition and subtraction are given.
Therefore we have implemented the effective combi-
nation of a parallel carry-free algorithm (MSD) and a
parallel implementing architecture (optical butterfly
interconnention), which is a new approach of digital
optical computing. In the future we will study the
butterfly architectures of an optical MSD multiplier
and divider; furthermore, we will build a unitary

6760 APPLIED OPTICS / Vol. 33, No. 29 / 10 October 1994

(a) input signals, (b) subtraction results, and (c) experimental

optical parallel MSD computing system to implement
addition, subtraction, multiplication, and division.

This research was supported by the Chinese Foun-
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