Behavior of extraordinary rays in uniaxial crystals

Zhongxing Shao and Chen Yi

We have experimentally investigated the behavior of extraordinary rays (E rays) in uniaxial crystals for
two cases: that in which optical axes are parallel to the surfaces and that in which they are
inclined. The E ray always rotates around the ordinary ray (O ray) in the same direction that the crystal
rotates around its surface normal. For the case when the axes are parallel to the surface, we discovered
that the E ray rotates up to « = 27 as the crystal rotates to & = w. The E ray traces a series of ellipses as
the angle of incidence is varied. Snell’s law is valid for the E ray only when the optical axes are
perpendicular to the plane of incidence. For the case in which the optical axes are incident, the E ray and
the crystal rotate at different speeds except for the case of normal incidence. The speed of rotation
increases with the incidence angle. The ray traces a curve known as the Pascal worm, which is described
by the equation (x2 + 22 — mx)? = n%x2 + 22). When the optical axes coincide with the plane of

incidence, the space between the rays in the plane is not related to the angle of incidence.

Introduction

Double refraction is an important and basic phenom-
enon in crystal optics. The fact that the ordinary (O)
ray of double refraction obeys Snell’s law is well
known. However, the behavior of the extraordinary
(E) ray, to the best of our knowledge, is not thor-
oughly understood.’* In Ref. 1 it was deduced that
each double refraction obeys the same law of refrac-
tion. Determination of the direction of propagation
of the E ray is more complicated because the index of
the ray depends on the refractive angle. However,
traces of the E ray in uniaxial crystals have been
calculated by some authors.5-7

In recent years there have been numerous applica-
tions of double refraction in the area of laser and
nonlinear optics. For example, birefringent filters
acting as effective dispersion elements have been
applied widely in some tunable lasers. Frequency
doublers are the key to expanding the laser wave-
length, and other crystal devices are important for
the generation of nonlinear optical effects. To
achieve the best design of these optical elements, one
must know the behavior of the E ray.

Here we report on an experimental investigation of
the behavior of the E ray, including rotating direction
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and speed, traces, and some features about the traces.
We used two pieces of calcite: one with the optical
axis parallel to the surface (APS) and the other with
the axis incident to the surface (AIS). Interesting
results were observed and are discussed.

Experiments and Results

The experimental setup is simple. The APS of the
calcite cuboid and the AIS of the calcite [which has
natural cleavage; the axis makes an angle y = 45.93°
(Ref. 7) with the three planes intersecting at the
vertex A or A’ (see Fig. 1) are illuminated by the
beam of a He—Ne (633-nm) laser through a telescope
system. The crystal thicknesses are 8.5 and 21.2
mm, respectively. They are mounted so that they
rotate both horizontally and vertically. In fact the
crystals were not processed precisely, and there is a
wedge (of ~ 3°) formed by the surfaces of each one.

In these experiments one must be sure that the
observer is not confused by the refraction at the rear
surface of the crystal. The rear surface is wedged
with respect to the front surface, although possibly by
only a small amount. For this reason we observed
the beam spots on the rear surface directly.

Taking incidence angles of 8 = 0, w/6, w/4, w/3,
57/12 and twisting the APS crystal from the angle
¢ = 0 (the optical axes are in the incident plane) to «
in steps of /16 and from ¢ = 0 to 2 in steps of w/8
for the AIS crystal, we took pictures of the E and the
O rays at the rear surface with a camera aimed at the
spots. The spaces between the spots of the two rays
in the negatives were measured with a reading micro-
scope. The spaces are fractions of a millimeter, and
the measuring error is +0.01 mm, so that the relative
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Fig. 1. Diagram showing double refraction in a uniaxial crystal.

The figure at the bottom shows the rotation of the X'Y'Z’ system
with respect to the XYZ system.

precision is better than 10%. The experimental er-
ror is estimated to be less than 10%.

For the APS calcite, the E ray always rotates to the
angle a = 2w around the O ray, no matter what the
angle of incidence is, whereas the crystal is rotated to
¢ = w around its normal. This result agrees with
the theoretical calculation in Ref. 7. The ray rotates
in the same direction as the crystal but not at the
same speed. At large angles of incidence, a equals
approximately 8¢ /5 within the first quadrant in the
coordinate system where the origin is at the O ray,
and the positive X axis coincides with the optical axis
in the plane of incidence; o« = 2¢ in the second and the
fourth quadrants, and a = 8¢4/3 in the third as in the
first quadrant. The traces of the ray are a series of
ellipses where the axes coincide with the coordinate
axes. The centers of the ellipses are at the X axis but
not at the O ray (see Fig. 2), which makes us believe
that these ellipses are not geometrically formed by
the oblique arrangement of the crystal. Also, we
believe that the circular trace for the case of normal
incidence is due to the unparallel surfaces. The
larger the angle of incidence becomes, the flatter the
ellipses become. The axes of the ellipses, a and b, are
listed in Table 1.

In the AIS case, if the crystal is rotated to ¢ = 2,
the E ray rotates to o = 2w in contrast to the APS
case. In Fig. 3 we find that the rotating speed of the
ray is not in step with the crystal. At incidences
larger than w/4, since the optical axis is close to
making an acute angle vy to the X axis in the plane of
incidence, the ray stays close to the plane even though
the axis might be rotated far from the plane. On the
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Fig.2. Traces of the E ray on the rear surface of the calcite APS at
a different incidence. The O ray acts as the origin of the coordi-
nates, the X" axis is parallel to the X axis. Curves I-V are the
traces for 6 = 0, 57/12, w/3, w/4, w/6, respectively. The symbols
on the curves denote the rotation of the crystal in steps of ¢ =
w/16: @, curveV; A, curve IV; ¥, curve III; +, curve II.

other hand, in the vicinity of the obtuse angle w—y,
the ray runs much faster than the axis. At a small
incidence, less than /6, the ray generally keeps in
step with the axis and is exactly in step with the axis
only at normal incidence. For each a = /2, the
average ¢ and o/ are listed in Table 2.

The E-ray traces in Fig. 3 (the solid curves) are
perfectly consistent with the Pascal worm (the dashed
curves) described by the equation (x2 + 22 — mx)? =
n*x? + z2), where the constants m and n for each
worm are listed in Table 2. The traces look as if they
are slightly asymmetrical to the coordinate axes,
which might be attributed to the crystal surfaces not
being exactly parallel. It is interesting to note that
all the distances between the coordinates of the traces
on the X and Y axes are the same as 4.55 mm. The
coordinates of the traces on the Y axis are symmetri-
cal to the origin, however; on the X axis they do not
increase the incidence. It looks as if the circular
trace at normal incidence is thrown in the positive
X-axis direction, whereas the spaces on the coordi-
nate axes remain fixed.

Geometry

The fixed coordinate system XYZ is set so that the
behavior of the E rays can be observed, and the

Table 1. Axes a and b of the Ellipses in Fig. 2 for Different Angles of

Incidence
a b

0 (mm) (mm)

0 0.45 0.45
w/6 0.46 0.44
w/4 0.60 0.56
w/3 0.81 0.61
bw/12 0.98 0.74




Fig.3. Tracesof E rays of the calcite AIS (natural cleavage). The
solid curves are the experimental results, the dashed curves are the
Pascal worm calculated by (x2 + 22 — mx)?2 = n2(x2? + 22). The
symbols denote the rotation of the crystal in steps of ¢ =
/8. The other factors are the same asin Fig. 2. @, curveV; A,
curve IV; A, curve III; +, curve IT; O, curve I. )

primed system X 'Y'Z’ is fixed in the crystal with the
optical axis parallel to the X' axis in the X'Y"’ plane
and rotates withit. When the primed system X'Y'Z’
rotates first through v around the Z’ axis and then
through ¢ around the Y’ axis (see the diagram at the
bottom of Fig. 1), the ray satisfies the ellipsoidal
equation in terms of the system XYZ:

(Acos? ¢ + n,2sin® d)x? + By? + (Asin? & + n,2 cos? d)z?
+ 2C cos dxy + 2Csin dyz + 2Dsindcosdzx =1, (1)
where

A =n2cos?y + n2sin?y,

B =n/2sin?y + n,2cos? v,

C = (n,2 — n,2)sin vy cos v,

D = (n?2 — n2)cos? v.

Here n,, n, are the principal indices of refraction of
the O and the E rays, respectively.

Now we discuss some issues concerning the traces
of the E ray in the AIS calcite. First we consider the
case of & = 0, or the optical axis in the XY plane.
The experiments tell us that the ray is in the plane,
namely, z = 0. Then the expression about the plane
tangent to the E-ray wave surface through point
T(x1, ¥1, 21) (Fig. 1), which we obtain by substituting
the coordinates of T into Eq. (1), is

Axx + By,y + C(yx + x,5) = 1. (2)

On the other hand, because PP’ = ct = x sin 8(c is the
speed of light, ¢ is time), the coordinates at point P are
(1/sin 0, 0, 0) when ¢ = 1/c. Substituting the
coordinates of P into Eq. (2), we have

Ax; + Cy; —sin6 =0
or

y1 = (sin 6 — Ax,)/C. (3)

Because point T is in the tangent plane, Eq. (2) with
respect to T can be rewritten as

Axq + By, + 2Cx,y, = 1. (4)
Considering Egs. (3) and (4), we have
%, = (sin 6 = CK)/A,
y1=k,

(+ is the axis at the acute angle to the positive X axis,

~— is the axis at the obtuse angle), where

k =[(A — sin? 0)/(AB — C?)2].

In the light of x; and y; the refractive angles between
the ray on both sides of the O ray and the Y axis (the
normal of the crystal) are

r,) = arctan[(sin 6 + CK)/(AK)], (5)
r, = arctan[(sin 6 — CK)/(AK)), (6)

respectively, and the spaces A between the coordi-
nates, E, and E,’, of the traces on the X" axis that are
parallel to the X axis (see Fig. 3) are

A = d[tan(r,’) — tan(r,)] = 2dC/A. (7)

Table 2. Data in the Experiments and Comparison between the Data and Theoretical Calculation®

Quad. I, IV Quad. IT, ITT r. (deg) r.' (deg)
m n

0 o} a/d I a/d (mm) (mm) Cal. Exp. Cal. Exp.

0 w/2 1 w/2 1 0 2.28 6.19 6.13 6.19 6.13

/6 5m/8 4/5 3m/8 4/3 4.10 0.45 12.72 13.02 23.87 24.04
w/4 3n/4 2/3 w/4 2 3.40 1.11 21.46 21.33 31.38 31.13
/3 >3mw/4 <2/3 <mw/4 >2 241 2.25 28.77 28.70 37.45 37.53
5m/12 >3m/4 <2/8 <m/4 >2 2.28 2.28 33.71 33.90 41.48 41.52

a9, incidence; ¢, rotation of the crystal; o, rotation of the E-ray around the O ray; m and n, constants in the Pascal equation; r, and r,’,
refractive angles between the E-ray incident upon the X" axis (see Fig. 3) and the normal.
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So far, we have been able to understand, in the light
of Eq. (7), why the spaces are constant as the angle of
incidence varies. It turns out that A is not related to
the angle of incidence but only to the angley. So we
infer that the same y would cause the same A, no
matter what the angle of incidence is.

If 6 = 0 (normal incidence), in addition, in the light
of Egs. (5) and (6) the refractive angle

r,) = arctan(C/A) = —r,.

In our situation r,’ = 6.186° by calculation and 6.125°
by experiment. Thisis a good agreement. In Table
2 r,' and r, are listed for different angles of incidence.

To discuss the traces of the E ray in the APS
crystal, we simply make y = 0 in Eq. (1). For ¢ =0,
we have

no2xx + nlyy = 1. (8)

Applying the coordinates of point P to Eq. (8), we
obtain

sin 0/n,2,
[1 - (Sin 9/n0)2]1/2/ne.

Similarly, when ¢ = w/2,

X1

Il

Y1

x, =sin8/n2,
y1=[1 - (sin 6/ )*]/?/n,.
Imitating the form of Snell’s law, we have for ¢ = 0
sin 8/sin(r,) = n,(0) 9)
with
n0) = [n,* + (n,2 — n,2)sin? 6]'/2/n,.  (10)

Apparently Eq. (9) is inconsistent with Snell’s law
because 7n,(0) depends on the incidence. However,
for b =m/2,

sin 0/sin(r,’) = n,.

Equation (10) is just the familiar Snell’s law. So we
can deduce that for Snell’s law to be valid for the E
ray the optical axes must be perpendicular to the
plane of incidence.
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Conclusions

We have studied the behavior of the E ray in a
uniaxial crystal (calcite). The ray always rotates
around the O ray as the crystal is rotated around its
normal. The ray does not rotate in step with the
optical axes except at normal incidence. For the
APS crystal (1) the ray always rotates to the angle a =
21 as the crystal is rotated to the angle ¢ = m, (2) the
traces of the ray are a series of ellipses, (3) Snell’s law
is valid for the ray only in the condition in which the
optical axes are perpendicular to the plane of incidence.
For the AIS case: (1) At the larger angles of inci-
dence, the ray stays close to the plane, although the
axis may move far away from the plane. As the axis
rotates 180° to the plane, the ray moves faster than
the axis. Conversely, at small incidence, the ray
rotates approximately in step with the axis and
exactly with the axis only at normal incidence. (2)
The traces of the ray are perfectly consistent with the
Pascal worm described by the equation (x2 + 22 —
mx)? = n?%(x? + 22). (3) When the axes are in the
incident plane, the spaces between the E and the O
rays in the plane do not change while the incidence is
varied.
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