

OPTICS COMMUNICATIONS

Optics Communications 120 (1995) 264-268

The transition probability of ${}^5D_J - {}^7F_0$ and hole-burning quantum efficiency in the $Sr_vBa_{1-v}FCl_{0.5}Br_{0.5}:Sm^{2+}$ system

Hongwei Song, Jiahua Zhang, Diankun Gao, Shihua Huang, Jiaqi Yu

Laboratory of Excited State Processes. Changehun Institute of Physics. Chinese Academy of Science, Changehun, 130021, China

Received 21 March 1995; revised version received 1 June 1995

Abstract

We report the changes of the ${}^5D_J - {}^7F_0(J=2,1,0)$ transition probability with composition y and its effect on the hole burning quantum efficiency in the $Sr_yBa_{1-y}FCl_{0.5}Br_{0.5}:Sm^2+$ system. We observed that the ${}^5D_J - {}^7F_0$ transition probability increases with the increase of Sr concentration. This result is attributed to the reduction of the energy separation between the 5D_J level and the 4f5d bands, which makes the electron wave functions of 5D_J states mix further with that of the 4f5d states. The dependence of the hole-burning quantum efficiency on the $5D_J - {}^7F_0$ transition probability was derived by the dynamical equations of the spectral hole burning of divalent samarium. Furthermore, the hole-burning experiments in $SrFCl_{0.5}Br_{0.5}:Sm^{2+}$ and $BaFCl_{0.5}Br_{0.5}:Sm^{2+}$ were performed under the same conditions. The experimental results present that the hole-burning quantum efficiency of $SrFCl_{0.5}Br_{0.5}:Sm^{2+}$ is higher than that of $BaFCl_{0.5}Br_{0.5}:Sm^{2+}$.

1. Introduction

In recent years, much research work has been performed on spectral hole-burning (SHB) of Sm²⁺ since the first observation of photon-gated spectral holeburning in BaFC1: Sm2+ at 2 K was reported in 1985 [1] and hole-burning at 77 K in BaF(Cl,Br): Sm²⁺ was first reported in 1989 [2]. One of the important reasons is that hole-burning of Sm²⁺ has a potential use in frequency domain optical storage (FDOS). Hole-burning of Sm²⁺ has some useful properties compared to the other materials for SHB. Especially, room temperature hole-burning of Sm²⁺ has been realized at present [3-7]. However, there are some problems to be solved in order to apply SHB in FDOS. One of the problems is how to increase the absorption cross section from ⁷F₀ to ⁵D_J which is a hole-burning transition. f-f transitions of rare earth ions are electric-dipole-parity forbidden transitions. But it is found that most of emissions of rare earth ions are electric-dipole transitions in experiments. In the light of the theory of Judd-Ofelt [8,9], the reason is that opposite-parity states are mixed into $4f^n$ states. In $Sr_yBa_{1-y}FCl_{0.5}Br_{0.5}:Sm^{2+}$, transitions of 7F_0 -4f5d are $4f^6$ -4f55d electric-dipole-parity allowed transitions, they have a large absorption cross section and high excitation efficiency. So it is possible to increase the excitation efficiency of 7F_0 -5D_J if we can make the 5D_J levels nearer to the 4f5d bands so that the wave functions of 5D_J are mixed further with that of 4f5d bands.

The paper reports studies on the dependence of the ${}^5D_J - {}^7F_0$ transition probability on composition (y) in $Sr_yBa_{1-y}FCl_{0.5}Br_{0.5}:Sm^{2+}$ and its effect on hole-burning efficiency.

2. Experimental

The powder samples of $Sr_yBa_{1-y}FCl_{0.5}Br_{0.5}:Sm^{2+}$ (y=0, 0.25, 0.5, 0.75, 1.0) were prepared by the method described in Ref. [9].

The excitation spectra of Sm²⁺ were measured by monitoring the energy position of 688 nm with a Hitachi F-4000 spectrometer. Fluorescent spectra and the fluorescent decay curves were measured with a nitrogen laser, and samples were put into a helium gas closed-cycling cryostat. A D330 monochromator, a Boxcar averager and a Datemate micro-computer were used to detect and analyze fluorescence of this series of samples. In hole-burning experiments, the samples were pumped and gated by a Nd:YAG laser.

3. Results and discussion

3.1. The energy separation between the 4f5d bands and the 5D_J level

Fig. 1 shows the 4f5d bands in the excitation spectra of BaFCl_{0.5}Br_{0.5}: Sm²⁺ and SrFCl_{0.5}Br_{0.5}: Sm²⁺ at room temperature. It shows that there are four excita-

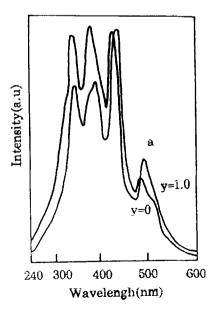


Fig. 1. Excitation spectra of $Sy_yBa_{1-y}FCl_{0.5}Br_{0.5}:Sm^{2+}$ measured by monitoring the $^5D_0-^7F_0$ emission and scanning the range of 4f5d bands (a) y=0, (b) y=1.0.

Table 1 Energy position (cm $^{-1}$) of the peak 'a' which is at the longest wavelength of 4f5d bands and that of 5D_2 , 5D_1 and 5D_0 emission peaks. The energy separation between peak 'a' and 5D_2 , 5D_1 , 5D_0 emission peaks.

E	у						
	1.0	0.75	0.5	0.25	0		
E _a	20566	20640	20683	20790	20877		
E_2	17757	17778	17787	17804	17818		
$\tilde{E_1}$	15824	15844	15864	15872	15876		
E_0	14478	14496	14516	14524	14531		
ΔE_{a2}	2809	2862	2905	2986	3059		
ΔE_{a1}	4742	4796	4819	4918	5001		
ΔE_{a0}	6088	6144	6167	6266	6346		

tion peaks for each 4f5d bands in the Sr_vBa_{1-v}-FCl_{0.5}Br_{0.5}: Sm²⁺ series and the peaks 'a' which are nearest to ⁵D, level shift to the low energy side with the increase of Sr concentration. The total move is 8 nm from $BaFCl_{0.5}Br_{0.5}:Sm^{2+}$ SrFCl_{0.5}Br_{0.5}: Sm²⁺. The other excitation spectra in $Sr_vBa_{1-v}FCl_{0.5}Br_{0.5}$ series (y=0.25, 0.5, 0.75) were obtained and in accord with this rule also. With the increase of Sr concentration, the position of the ⁵D_J level shift to the low energy side also. Table 1 shows energy positions (cm⁻¹) of the peaks 'a' and that of the ${}^{5}D_{1}$ (J=0,1,2) emission peaks, the energy interval between peaks 'a' and the ${}^5D_I - {}^7F_0$ (J = 0, 1, 2) emission peaks. Table 1 shows that the ⁵D, level and the 4f5d bands move to the low energy side with the increase of Sr concentration and the shift of the 4f5d bands is more significant comparing to that of the ⁵D₁ level. So the separation between the 4f5d bands and the ⁵D, level becomes smaller with the increase of the Sr concentration.

3.2. The
$${}^5D_J - {}^7F_0$$
 electron transition probabilities of $Sm^2 + in Sr_vBa_{I-v}FCl_{0.5}Br_{0.5}: Sm^2 + series$

In the light of the theory of Judd-Ofelt, if $|\Psi'J'J'_z\rangle$ is a state of the 5D_J level, $|\Psi''\rangle$ is a state of the 4f5d bands, the mixed state $|B\rangle$ of the 5D_J level is

$$|B\rangle = |\Psi'J'J'_z\rangle + \sum_{\Psi''} \frac{|\Psi''\rangle\langle\Psi''|H_c|\Psi'J'J'_z\rangle}{E(\Psi'J'J'_z) - E(\Psi'')}$$

where H_c is hamiltonian of the interaction to produce the mixture of wave functions. If $\langle A | = \langle \Psi J J_z |$ is a state of ${}^{7}F_{0}$, the matrix elements of electric dipole P are

$$\left\langle \mathbf{A} \left| P \right| \mathbf{B} \right\rangle = \sum_{\Psi''} \frac{\left\langle \Psi J J_z \left| P \right| \Psi'' \right\rangle \left\langle \Psi'' \left| H_c \right| \Psi' J' J'_z \right\rangle}{E(\Psi' J' J'_z) - E(\Psi'')}$$

since $|\Psi''\rangle$ is the state of the 4f5d bands, $\langle \Psi J J_z | P | \Psi'' \rangle$ is the parity allowed matrix element. The smaller the value of $[E(\Psi' J' J_z') - E(\Psi'')]$, the larger the value of the $^5D_J - ^7F_0$ transition probability.

In order to obtain the ⁵D₁-⁷F₀ electron transition probability, the ⁵D_J-⁷F₀ fluorescence decay times at different temperatures were measured. Table 2, Table 3 and Table 4 are the variations of the 5D_I (J=2, 1, $0)^{-7}$ F₀ decay times on composition (y) and temperature, respectively. Table 2 shows that the ⁵D₂-⁷F₀ decay times approach saturation values at temperatures below 30 K and they are shortened with the increase of temperature. Above 100 K, the ⁵D₂-⁷F₀ fluorescence is difficult to be detected. In the light of the theory of multi-phonon relaxation: $\tau = 1/(W_{NR} + W_R)$, where $W_{\rm NR}$ is the nonradiative transition probability of ${}^5{\rm D}_J$ and W_R is the radiative transition probability of $^{5}D_{J} = \sum_{J'} {}^{7}F_{J'}$. The radiative transition decreases with the decrease of temperature, if T approaches 0, then W_{NR} approaches 0. But the radiative transition probability does not change with temperature. Therefore, the result above shows that the nonradiative transition of ⁵D₂ is negligible compared to that of the ${}^5D_{\mu} = \sum_{\nu} {}^7F_{\nu}$ radiative transition at a temperature below 30 K. In that case, the $^{5}D_{I}-\Sigma_{I'}$ $^{7}F_{I'}$ radiative transition probability equals 1/ τ_0 , τ_0 is the 5D_2 –7 F_0 decay time when τ_0 approaches saturation value at low temperature. The decay times of ${}^5D_1 - {}^7F_0$ and ${}^5D_0 - {}^7F_0$ were measured to 300 K. To the samples of some value of y, the decay times of 5D_0 ⁷F₀ approach a saturation value at temperatures below 30 K, they increase with the increase of temperature to a certain temperature and then decrease with the increase of temperature above this temperature. These facts can be explained in the light of the luminescent dynamic equations [10]. By the same method as above, the electron transition probabilities of ${}^5D_1 - \sum_{\mu} {}^7F_{\mu}$ and ${}^{5}D_{0} - \sum_{J'} {}^{7}F_{J'}$ were obtained. So we obtain the dependence of the transition probability of ${}^5D_I - \sum_{\mu} {}^7F_{\mu}$ (J = 2, 1, 0) on the value of y (see Fig. 2). It shows that the ${}^5D_I - \sum_{\mu} {}^7F_{\mu}$ transition probability increases with the increase of the Sr concentration in Sr_yBa_{1-y}FCl_{0.5}Br_{0.5}: Sm²⁺ series. From Fig. 2 we can see that, the increase in R for the 5D_2 , 5D_1 and 5D_0 level

Table 2 Variation of the 5D_2 fluorescent lifetime (ms_{-1}) in $Sr_vBa_{1-v}FCl_{0.5}Br_{0.5}:Sm^{2+}$ on composition (y) and temperature.

T(K)	у						
	1.0	0.75	0.5	0.25	0		
17	0.36	0.38	0.40	0.43	0.46		
30	0.35	0.39	0.39	0.44	0.47		
40	0.15	0.16	0.24	0.29	0.27		
50	0.02	0.02	0.04	0.04	0.21		
70	0.01	0.01	0.01	0.02	0.06		

Table 3 Variation of the 5D_1 fluorescent lifetime (ms_{-1}) in $Sr_vBa_{1-v}FCl_{0.5}Br_{0.5}:Sm^{2+}$ on composition (y) and temperature.

<i>T</i> (K)	y						
	1.0	0.75	0.5	0.25	0		
17	0.43	0.61	0.67	0.72	0.89		
30	0.42	0.62	0.68	0.70	0.88		
50	0.40	0.51	0.61	0.61	0.76		
70	0.38	0.49	0.60	0.60	0.78		
100	0.35	0.52	0.55	0.40	0.65		
150	0.32	0.36	0.26	0.30	0.64		
200	0.24	0.35	0.22	0.28	0.64		
250	0.17	0.17	0.15	0.20	0.64		

Table 4 Variation of the 5D_0 fluorescent lifetime (ms $^{-1}$) in $Sr_yBa_{1-y}FCl_{0.5}Sr_{0.5}:Sm^{2+}$ on composition (y) and temperature.

T(K)	y				
	1.0	0.75	0.5	0.25	0
17	1,44	1.67	1.76	1.87	1.89
30	1.38	1.69	1.74	1.89	1.89
50	1.32	1.69	1.85	1.86	2.07
70	1.31	1.58	1.43	1.90	2.05
100	1.32	1.28	1.40	1.44	2.31
150	1.30	1.31	1.28	1.46	1.71
200	1.05	1.09	1.15	1.14	1.68
250	1.02	0.86	0.72	1.05	1.61

are about 17%, 47% and 18% respectively, and we cannot find a systematic relationship between the amount of increment in R and the energy separations ΔE_{ai} (i = 0, 1, 2) in Table 1. We think that the hamiltonian of interaction to produce the mixture of wave functions is different for the 5D_2 , 5D_1 and 5D_0 level, hence the amount of increment in R is complex. In the experiments, the relative intensity of $^5D_V - ^7F_{I'}$ almost

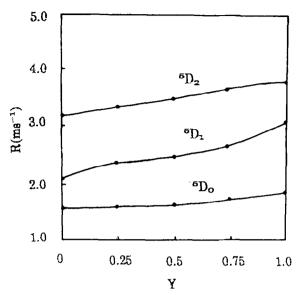


Fig. 2. Dependence of ${}^5D_J - \sum_{J'} {}^7F_{J'} (J=0,1,2)$ radiative transition probability in $Sr_vBa_{1-v}FCl_{0.5}Br_{0.5}: Sm^{2+}$.

does not change with change of y, so the ${}^5\mathrm{D}_J - {}^7\mathrm{F}_0$ transition probability is proportional to the ${}^5\mathrm{D}_J - {}^5\mathrm{F}_J$, transition probability. According to the Einstein equation:

$$R' = 8\pi h \nu^3 R/c^3$$

where R' is the absorption probability. So we can derive the ${}^{7}F_{0}-{}^{5}D_{J}$ absorption probability which is an important parameter for hole-burning efficiency.

3.3. The effect of the ${}^{7}F_{0}$ — ${}^{5}D_{J}$ absorption probability on hole-burning efficiency

Under the condition of $\mu \le \tau \le T_0$ (μ is the width of the laser pulse, τ is the electron lifetime of the 5D_J level, T_0 is the interval of the laser pulses) an approximate solution was derived by the dynamical equations of the three energy level system for hole-burning in the 5D_J - 7F_0 transition with a pulsed laser. It is as follows [11]:

$$N_3(n) = \eta_{23} I I' \sigma_0 \sigma_1 \mu \tau' N_0 \exp[a(n-1)]$$
,

where N_3 is the number of electrons captured by traps in the *n*th pulse. η_{23} is the probability that traps capture electrons from the conduction band, there η_{23} is taken as a constant. *I* and *I'* are the intensities of hole-burning laser and the gating laser, respectively. σ_0 and σ_1 are the ${}^{7}F_0-{}^{5}D_2$ and the ${}^{5}D_2-4f5d$ absorption cross sections, respectively. τ' is the electron lifetime of the conduction band. N_0 is the 7F_0 electron populations. $a = \ln(1 - \eta_{23}II'\sigma_0\sigma_1\mu\tau')$. n = 0, 1, 2..., etc.

The hole-burning quantum efficiency η is defined as the number of traped electrons produced by a holeburning photon when t approaches 0, so

$$\eta = N_3 h \omega / I \mu = \eta_{23} \sigma_0 \sigma_1 I' \tau' N_0 h \omega$$
.

Since σ_0 is proportional to the ${}^7F_0 - {}^5D_J$ absorption probability R', the hole-burning quantum efficiency η is proportional to R'. Because the 5D_J fluorescence lifetime is in order of ms, and the pulse width (the gating time in a pulse) is in order of ns, the change of the 5D_J lifetime has little effect on the photon gating process. Furthermore, the absorption probability of the 5D_J -conduction band is much larger than that of ${}^7F_0 - {}^5D_J$, most of the electrons in the 5D_J level are gated to the conduction band. Hence we think that the ${}^7F_0 - {}^5D_J$ transition probability is the most important factor for hole burning efficiency.

Therefore, in the case of weak excitation pumped and gated by a pulsed laser, since the 7F_0 – 5D_J absorption probability of $Sr_yBa_{1-y}FCl_{0.5}Br_{0.5}:Sm^{2+}$ increases with the increase of Sr concentration, the hole-burning quantum efficiency performed in the 7F_0 – 5D_J transition is expected to be enhanced with the increase of Sr concentration.

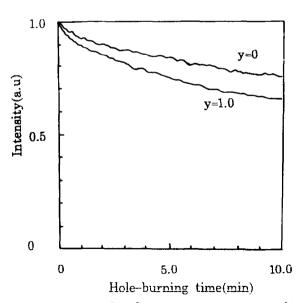


Fig. 3. Dependence of ${}^5D_2 - {}^7F_0$ fluorescence intensities of Sm²⁺ ions at burning site (at 77 K) on hole-burning time (hole-burning of ${}^5D_2 - {}^7F_0$ were performed in same condition. $I_{hole} = 80 \text{ mJ}$).

In order to prove our theoretical result, the holeexperiments were performed SrFCl_{0.5}Br_{0.5}: Sm²⁺ and in BaFCl_{0.5}Br_{0.5}: Sm²⁺ by a 560 nm pulsed laser at 77 K. Fig. 3 shows the dependence of the ⁵D₂ emission intensities at a burning site on hole-burning time in the same hole-burning condition. It shows that a deeper hole can be obtained in SrFCl_{0.5}B4_{0.5}: Sm²⁺ under the same hole-burning condition $(I_{hole} = 80 \text{ mW})$ and at the same hole-burning time. So we can claim that the hole-burning quantum efficiency in SrFCl_{0.5}Br_{0.5}:Sm²⁺ is larger than in BaFCl_{0.5}Br_{0.5}: Sm²⁺ if we suppose that the change of y has little effect on the other parameters except the ⁷F₀-⁵D₁ absorption probability. The experimental results is in accord with the theoretical result.

4. Conclusions

In the $Sr_vBa_{1-v}FCl_{0.5}Br_{0.5}:Sm^{2+}$ series, the higher the concentration of Sr, the smaller the energy separation between the 5D_J level and the 4f5d bands, the larger the ${}^5D_J-{}^7F_0$ transition probability. In the process of

photon-gated spectral hole-burning pumped and gated by a pulsed laser, the hole-burning quantum efficiency is proportional to the ${}^{7}F_{0} - {}^{5}D_{J}$ transition probability. The experimental results show that the hole-burning quantum efficiency increases with the increase of Sr concentration.

References

- A. Winnaker, R.M. Shelby and R.M. Macfarlane, Optics Lett. 10 (1985) 350.
- [2] C. Wei, S. Huang and J. Yu, J. Lumin. 43 (1989) 161.
- [3] J. Zhang, S. Huang and J. Yu, Chinese J. Lumin. 12 (1991)
- [4] K. Holloday, C. Wei, M. Croci and Urs. P. Wild, J. Lumin. 53 (1992) 227.
- [5] J. Zhang, S. Huang and J. Yu, Optics Lett. 17 (1992) 149.
- [6] R. Jaaniso and H. Bill. Euro, Phys. Lett. 16 (1991) 569.
- [7] K. Horie, S. Todoriki and N. Soga, J. Lumin. 55 (1993) 217.
- [8] B.R. Judd, Phys. Rev. 127 (1962) 719.
- [9] G.R. Ofelt, J. Chem. Phys. 37 (1962) 511.
- [10] H. Song, J. Zhang, S. Huang and J. Yu, Chinese J. Lumin. 3 (1994) 201.
- [11] H. Song, J. Zhang, S. Huang and J. Yu, Chinese J. Lumin. 3 (1994) 216.