IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Properties of the surface magnetopolaron in polar crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 8 535
(http://iopscience.iop.org/0953-8984/8/5/004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 159.226.165.151
The article was downloaded on 05/09/2012 at 04:59

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt8r(1996) 535-544. Printed in the UK

Properties of the surface magnetopolaron in polar crystals

Wei Xiaoft§, Bao-Quan Suft§ and Jing-Lin Xiadi§

1 China Centre for Advanced Science and Technology (World Laboratory), PO Box 8730, Beijing

100080, People’s Republic of China

i Laboratory of Excited State Processes, Changchun Institute of Physics, Academia Sinica,
Changchun 130021, People’s Republic of China

§ Department of Physics, Inner Mongolia National Teacher's College, Tongliao 028043, People’s
Republic of China

Received 10 February 1995, in final form 20 September 1995

Abstract. There is weak bulk but strong surface coupling between the electron and phonons
for polar crystals in a magnetic field. In this paper, the influences of the electron interaction

with both the weak-coupling bulk longitudinal optical phonons and the strong-coupling surface

optical phonons on the properties of the surface polaron in a magnetic field are studied. The
effective Hamiltonian of the surface polaron is derived by using a linear-combination operator

method. Numerical calculations on the AgCI crystal, as an example, are performed, and some
properties of the vibration frequency and the effective interaction potential of the surface polaron

in a magnetic field are discussed.

1. Introduction

With the development of magneto-optical technology, the properties of the polaron in polar
crystals in a magnetic field of arbitrary strength have been of considerable interest [1-4].
In the early 1960s, Larsen [5, 6] investigated the energy level of the polaron in magnetic
field and the cyclotron-resonance problem of the piezopolaron. Then he [7] studied the
cyclotron resonance of a two-dimensional (2D) polaron using the Rayleigh3dBoper
perturbation theory (RSPT). Recently, he [8] proposed a novel fourth-order perturbation
method to investigate the properties of 2D polarons. Special attention is focused on
the cyclotron-resonance frequency and the cyclotron-resonance mass of an electron in 2D
systems because they can be obtained from the position of certain peaks in the magneto-
optical absorption spectrum. Wai al [9] discussed the magneto-optical absorption of a 2D
polaron in detail using the memory-function approach. Considering both the electron—bulk-
longitudinal-optical (LO)-phonon and electron—surface-optical (SO)-phonon interactions,
Gu and co-workers [10] have generalized this method to treat the magnetopolaron in a
semiconductor quantum well. Later, Osoeital [11] reported for the first time a theoretical
calculation for the resonant donor-impurity magnetopolaron in GaAs=@&,As quantum

well structures. Employing Haga's perturbation method,eZal [12] derived an effective
Hamiltonian for the interface magnetopolaron in polar crystals at zero temperature, in which
the interactions of both bulk LO phonons and interface phonons have been taken into
account. Wei and co-workers [13, 14] studied the induced potential and the self-energy of
an interface magnetopolaron interacting with bulk LO phonons as well as interface-optical
phonons using the Green-function method.
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For the bulk polaron, the weak- and intermediate-coupling theories are applicable for
the electron—bulk-LO-phonon coupling constant 6 [15], whereas for the surface polaron
this confinement is about 2.5 [16]. Hence, when the electron—SO-phonon coupling constant
satisfieda > 2.5, the strong-coupling theory must be applied. There is weak coupling
between the electron and the bulk LO phonon but strong coupling between the electron
and the SO phonon for many polar crystals. So far, research into this has been very
scarce. The properties of the surface or interface polaron in corresponding polar crystals
have been discussed by the method of a linear-combination operator and a simple unitary
transformation by the present authors [17-19].

Huybrechts [20] proposed a linear-combination operator method, by which a strong-
coupling polaron was investigated. Later, many workers [21, 22] studied many aspects of
the strong-coupling polaron by this method.

The ground-state energy and the cyclotron-resonance frequency of the surface polaron
in a magnetic field have been calculated by many methods. Many of these mainly
concentrated attention on the weak- and intermediate-coupling cases. However, the surface
magnetopolaron in strong-coupling polar crystals has not been investigated so far.

The purpose of this present paper is to explore the effect of the magnetic field on
the properties of surface polarons. With both weak coupling between the electron and
bulk LO phonon and strong coupling between the electron and SO phonon included, we
obtain an expression for the effective Hamiltonian, the effective interaction potential and
the cyclotron-resonance frequency of the surface polaron as a function of the magnetic field
strength by using the linear-combination operator method. Numerical calculations, taking
a AgCI crystal as an example, are performed and the properties of these quantities for the
surface polaron in polar crystals in a magnetic field are discussed.

2. The Hamiltonian

A surface between a AgCI crystal and a vacuum is perpendicular te thés; the semi-
infinite space; > 0 is occupied by the AgCI crystal, whereas the spaee0 is the vacuum.

A slow electron is placed inside the AgCI crystal at a distance 0) from the surface.

On the assumption that an external magnetic fiBld= (0, 0, B) (applied normal to the
surfaces) exists, the Hamiltonian of the electron, interacting with both the bulk LO phonon
and the SO phonon, can be written as
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where P(P,, Py, P,) is the electron momentum ama is the band mass of the electro.
andV are the surface area and the volume, respectively, of the AgCI crygtal,) is the
static (high-frequency) dielectric constani.is the position vector in the—y plane of the
electron. K andQ are the 2D wavevectors of bulk LO and SO phonons, respectivgly.
anda,, are the creation and annihilation operators, respectively, of a bulk LO phonon with
a three-dimensional wavevectar, andb,S andbg are the corresponding operators for the
SO phonon with a two-dimensional wavevec@®r- w;, ws andwy are the frequencies of
the bulk LO, SO and bulk transverse optical phonons.

The Hamiltonian can formally be divided into two parts:

H=H,+ Hy (29)

where

P~2 2(e0o — 1)
2m AZeoo(8xo + 1)

and the rest is called;. On the assumption that the motion in thedirection is slow,

therefore, when determining the motion state in they plane, quantities such as the

momentum and position in the direction may be regarded as parameters. This procedure

is exactly analogous to the quasi-adiabatic approximation [23—25]. For motion parallel to
the x—y plane, we introduce the unitary transformations

s = exp( i Y ajauwy - p~i42 3 b3haQ - ) (3a)
w Q

(2b)

where A;(i = 1,2) is a parameter characterizing the coupling strength. In the unitary
transformationl;, where A; = 1 corresponds to the weak coupling between the electron
and the bulk LO phonon, and, = 0 corresponds to the strong coupling between the
electron and the SO phonon, we can easily obtain

Uy = exp( — i) apaww) - p>. (3b)

Carrying out the unitary transformation withk(3 the Hamiltonian (&) is transformed to
H;y.
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Following Huybrechts [20] we also introduce the linear combination of the creation and
annihilation operatoré™ andb to represent the momentum and position of the electron:

Iy 1/2

P, = (’"2> (bj +b}) (5a)
= \1/2

p =i (2}%) (b) — b7 (5b)

where the suffixj refers to thex andy directions,A is a variational parameter anhg:‘ and

b; are Bose operators satisfying the Bose commutative relation. Substituting (5) into (4),
we have

Hy = Hy + Hs (6a)
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Hs is a term describing the interaction between phonons of different wavevectors in the
recoil process and we shall neglect the recoil endilgy
Carrying out a second unitary transformation,

Hy = Uy HyUs (7a)

where
Uz = exp( (el fu = ) + S bst0 ~ bazo) ) (7h)
w Q

Jw(fy) and go(gp) are variational parameters; then the transformed Hamiltonian can be
rewritten as
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The ground-state wavefunction of the systempis- ¢(0)|0) wherep(p) is the normalized
surface polaron wavefunctionQ) is the zero-phonon state, which satisfied

aw|0) = bq|0) = b;|0) = 0. 9)
Then the effective Hamiltonian of the system can be obtained as

H.rr = H; + Hyery (10a)
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Using the variational method, we get
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From (13), one can determine the frequercyat different coordinateg. Finally, the
effective Hamiltonian can be expressed as
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are the induced potential and the effective interaction potential, respectively.
In the following, the effective HamiltoniaH, s, of the electron—phonon coupling system
will be considered in two different limiting cases.

(1) The electron is very near the surface, ke u;l or u;L. In this case, we have

= T 3/2

F(L) = h—; n hg;‘z' _ gaﬁa)s (2) " (15)
The variation inF (1) with respect tax yields
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where = x2. Solving the quartic equation (16), we get
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and F (Ao) is the minimal value. Finally, the effective Hamiltonian of the surface polaron
can be expressed as
2 2 . 72 1/2
P; (6o — 1) hhog  ho? ﬁ o, <)»o> Cas)

Hyp= o 4 CE==2) | Mo VT
1= o T et D) 2 8 2 %N




Surface magnetopolaron properties in polar crystals 541

From (18), one can see that the effective Hamiltonian of the surface polaron is independent
of the interaction between the electron and the bulk LO phonon, whereas it is only dependent
on the interaction between the electron and the SO phonon. The self-trapping energy is

— (\Y? Rao ho?
il hw( °> 0 _ 1% (19)

Ws

E; = —o - - .
=Y 2 8
In (19), the first two terms are the self-trapping energy induced by the polarization of SO
vibration. The third term represents the self-trapping energy induced by coupling between
the surface polaron and magnetic field.
(2) The electron is very deep in the bulk, iz u,‘l or u; 1. In this case, we have

v ho? mo
The variation inF (1) with respect tax yields
w,
A= —. 200
5 (200)

The effective Hamiltonian of the surface polaron can be written as
P?  A(eo+1) T
L4+ Jhw. — -~ ohw. 21
om | Azeg(eo + 1) T 210 T pne (21)

The effective Hamiltonian of the surface polaron is only dependent on the interaction
between the electron and the bulk LO phonon. The self-trapping energy is

Hypp =

E, = %Ewc + %a;ﬁa)l. (22)

In (22), the first term is the Landau ground-state energy. The second term represents the
self-trapping energy originating from the interaction between the electron and the bulk LO
phonons.

This shows that, when the distance between the electron and the surface is much smaller
than the radius of the bulk polaron, the effect of the bulk phonons can be neglected and so
can the effect of the surface phonons when the corresponding distance is much larger than
the corresponding radius.

In general, as the distance between the electron and the surface is the same order of
magnitude as the radius of the bulk polaron, the effects of both the bulk LO and the SO
phonons must be taken into account. In this case the electron moves in a non-local potential
as (14).

3. Results and discussion

In this section, taking the polaron in the surface of a AgCl crystal as an example, we perform
a numerical evaluation. In table 1, the data for a AgCl crystal are given. Figure 1 shows
the variation in the frequency of the surface polaron in a AgCl crystal with the coordinate

z at different magnetic field8. The solid curve denotes the caBe= 10 T, and the broken
curve represents the ca®&= 0. From the figure, one can see that the frequenayill
decrease with increasing At the same position (same value 9, the higher magnetic
field, the higher is the value df.

In (14a), the first term is the kinetic energy of the electron in the direction perpendicular
to the surface of the crystal. The second term represents the energy of the image potential.
The third and fourth terms stand for the induced potential resulting from the electron—bulk-
LO-phonon interaction and the electron—SO-phonon interaction. This indicates that only
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Table 1. The data for a AgCl crystal. All the parameters are taken from [26].

hay haws
Material  ¢g £o00 (meV) (meV) o oy
AgCl 95 397 230 21.6 1.97 2.89
201 —B=10T 201 ——B8=10T
—=B=0 ——B8=0
15§ 15§
"
fia) 10"'
e
~<
5 =
0 ! 0 |
0 20 40 0 20 40
Z(A) Z(A)

Figure 1. The relation between the vibrational Figure 2. The relation between the effective interaction
frequency and the coordinate in a AgCl crystal at potential V. and the coordinate in a AgCl crystal at
different magnetic fieldss. different magnetic fieldss.

the electron—SO-phonon interaction is dependent on the magnetic field, whereas the image
potential and the electron—bulk-LO-phonon interaction are independent of the magnetic field.
Figure 2 shows the relationship between the effective interaction potéffiain a AgCl

crystal with the coordinate at different magnetic field8. The solid curve denotes the
caseB = 0, and the broken curve represents the dase 10 T. Asz — 0, the first term

of (14d) is dominant, and the surface polaron will be repulsed away from the surface (see
figure 2). Thus the surface polaron cannot get infinitely near the surface; there is no surface
polaron in the range near the surfadé,, > 0). Because of the similarity to the case of
excitons we call the thin layer the surface-polaron-free surface layer (SPFSL) or the ‘dead
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layer’ of surface polarons. Solving the equation
Vers() =0 (23)

the root is the depth of SPFSL, which we denotedafor the AgCl crystal in magnetic
field, d = 6.38 A). From figure 2, one can see that the effective interaction poteVijal
of the surface polaron for a AgCI crystal in a magnetic field will increase with increasing
coordinatez at the same magnetic field. From figure 2, we also see that the effective
interaction potentiaV, s will increase with increase in magnetic fieRi

From equations (14), one can see that, for a system having a surface, the properties of
system depend not only on the electron—SO-phonon coupling congtahe electron—bulk-
LO phonon coupling constant and the magnetic fiel@ but also on the distancebetween
the electron and the surface. When the electron is very near the surfagegi.; * or u;?,
the frequencyr (17) and self-trapping energ¥;, (19) of the surface magnetopolaron are
only dependent on the magnetic figddand coupling constants,, whereas it is independent
of the distancez and coupling constant;. The effective Hamiltoniarf, ;s (18) of the
surface polaron is dependent on the magnetic figldthe coupling constant, and the
distancez, whereas it is independent of only the coupling constantWhen the electron
is very deep in the bulk, i.e; > u;l or u; %, the frequency. (20b) and self-trappingk,,
(22) of the surface magnetopolaron are dependent only on the magnetidBfiafdl the
coupling constant;, whereas they are independent of the distanead coupling constant
a,. The effective Hamiltoniarf, s, (21) of the surface magnetopolaron is dependent on the
magnetic fieldB, the coupling constani; and the distance, whereas it is independent of
only the coupling constan;.
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