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Abstract

A scheme based on general quantum scattering theory is presented in this paper to describe the performance of 1-D
Bragg-Fresnel optics recently developed for X-ray optics. The theory and method are valid as long as the working

Ž .wavelength is smaller than the characteristic parameter i.e. half-width of center zone of the Bragg-Fresnel optics and this
allows us to evaluate the performance of Bragg-Fresnel optics. Some simple numerical application results are also shown.
q 1998 Elsevier Science B.V.

1. Introduction

X-ray optics is making an impressive breakthrough
towards higher resolution and efficiency. The two competi-
tive approaches in these efforts are reflection and diffrac-
tion optics. Grazing incidence optics was the first focusing
device used in X-ray imaging systems. In the late 1970s,
multilayer mirrors for X-ray were greatly developed. Com-
pared to grazing incidence optics, a multilayer coating
permits reduction in mirror size because of the possibility
of a larger incidence angle. However, X-ray multilayer
mirrors meet difficulties at manufacturing curve multilayer
mirrors and getting essential reflectivity for shorter wave-

Ž .length range closely water window or hard X-ray . Due to
its high spatial and spectrum resolution, diffraction optics
was also developed. Nowadays transmission zone plates
are widely used as objectives or condensers in X-ray
imaging microscopes, but they are not strong enough to
withdraw high mechanical and heat load. In 1986, Aristov

w xet al. 1 advanced a new optics in X-ray range, i.e.
Ž .Bragg-Fresnel optics BFO that patterned some kinds of

Ždiffraction graphs in Bragg reflectors crystals or multi-
.layer mirrors . In principle, BFOs maintain the advantages

of zone plates which offer high spatial resolution and of
multilayer mirrors which offer high mechanical and heat
stability. High mechanical and heat stability becomes espe-
cially important with the advance of ultrabright syn-
chrotron sources. In addition, BFOs can be used either for

Ž . Žhard crystals as Bragg reflectors or soft multilayers as
.Bragg reflectors X-ray regions.

During the past 10 years, BFOs have been proposed,
realized and successfully tested in hard and soft X-ray

w xregions 1,2 , and some research groups have also tried
different theories and methods to describe BFO perfor-

w xmance 3–5 . Until now, however, all the theoretical meth-
ods have been based on considering X-ray as a wave front.
In this paper, we consider X-ray as a particle-flow and
evaluate BFO performance by using general quantum scat-

w xtering theory, which is much simpler 4 , for calculating
BFO performance such as scattering power density. The
only restrictive condition for our method to be valid is that
the wavelength of radiation l is smaller than the half-width
of the center zone of the diffraction pattern. This condition
is generally fulfilled in the X-ray region.

In general quantum scattering theory, it is important
first to decide the scattering potential function which inter-
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acts with the incident particle flow; thus the result of
interaction is expressed by a scattering amplitude. Accord-

Žing to the BFO structure which couples multilayer in-de-
. Ž .pth structure and diffraction pattern lateral structure , we

Ž .describe it by using a three-dimensional 3-D potential
function. Then, due to separability of the electric suscepti-
bility of the materials, calculation of the scattering ampli-
tude is carried out laterally and in-depth, respectively.

As a special application of the method, the BFO scatter-
ing amplitude with a 1-D focusing diffraction pattern is
derived in detail. Scattering power density and diffraction
efficiency are calculated in connection with the scattering
amplitude. The method can be easily generalized to other
different diffraction patterns, the process will probably be
complicated if the diffraction pattern is more complicated.

2. Fundamental theory

Considering incident X-ray radiation as a particle-flow
which is scattered by the scattering potential, in general
quantum scattering theory we solve such problems by
obtaining the solution of the following Schrodinger equa-¨
tion,

2m
2 2

= qk w R s V R w R , 1Ž . Ž . Ž . Ž . Ž .2
"

where 2mr"
2 is a constant related to particle energy, it

will be zero when the incident particle-flow is a photon-
flow. However, k 2 related to the system energy is a
complex term, the imaginary component of which is re-

Ž Ž .lated to the interaction expressed as V r between pho-
Ž .tons and medium i.e. BFOs , by moving this component

Ž .to the right-hand side of Eq. 1 , we obtain an inhomoge-
Ž .neous differential equation similar to Eq. 1 :

=
2 qk 2 w R sV R w R . 2Ž . Ž . Ž . Ž . Ž .

Using the well-known derivation in general quantum
Ž .scattering theory, we solve Eq. 2 :

w r sexp i kPrŽ . Ž .

< <1 exp ik ryRŽ .
y d R V R w R . 3Ž . Ž . Ž .H

< <4p ryR

Ž .Eq. 3 is a integral equation which is similar to the second
kind Fredholm equation. Considering the interaction func-

Ž .tion i.e. scattering potential as a perturbation, we solve
the equation term by term. First we define Green’s func-
tion as

w xG E w s d R G r , R , E w R . 4Ž . Ž . Ž . Ž .H

Ž .The solution of Eq. 3 can be expressed by a perturbation
series:

wsw r qw r Vqw r V 2q . . . , 5Ž . Ž . Ž . Ž .0 1 2

where

w r sexp i kPr , 6Ž . Ž . Ž .0

w r s G r , R w R d R , 7Ž . Ž . Ž . Ž .Hn ny1

so the 1st term of the solution should be:

w r s G r , R w R d RsG E w r , 8Ž . Ž . Ž . Ž . Ž . Ž .H1 0 0

w r s G r , R w R d RsG E G E w r .Ž . Ž . Ž . Ž . Ž . Ž .H2 1 0

9Ž .

Using the same reasoning, we finally get:

w r sw r qG E Vw r qG E VG E Vw rŽ . Ž . Ž . Ž . Ž . Ž . Ž .0 0 0

q . . . . 10Ž .
Ž .In this case, we define an operator S E which is

similar to the S matrix in scattering theory, and a self-con-
sistent equation follows:

S E sVqVG E S E . 11Ž . Ž . Ž . Ž .
Ž .Then Eq. 3 can be rewritten as

< <1 exp ik ryRŽ .
w r sexp i kPr y d RŽ . Ž . H

< <4p ryR

=S E exp i kPR . 12Ž . Ž . Ž .
Ž < <. < <To continue, let us treat the term exp ik ryR r ryR

Ž . < <in Eq. 12 . Due to r)R, we expand ryR in terms of
Rrr:

22r 1 R RPrŽ .
< <ryR sryRP q y q . . . , 13Ž .3r 2 r r

where r is regarded as the position vector corresponding to
an observation point. Because we are interested in Fresnel
diffraction, we thus restrict ourselves to the second order
in R.

Ž < <.The expression exp ik ryR is a function which
Ž .changes fast along with R. By substituting Eq. 13 in this

expression, we obtain:

ik
< <exp ik ryR sexp ikr exp RPrŽ . Ž . Ž .ž /r

22R RPrŽ .
=exp ik y . 14Ž .3ž /2 r 2 r

Then we introduce a new physical parameter k s,

k s s krr r 15Ž . Ž .



( )Z. Le et al.rOptics Communications 149 1998 223–229 225

< s <for the elasticity scattering, k sk, and by using the
calculation rules for vectors,

< <aPbsab cos q , a=b sab sin q ,Ž . Ž .
< < < <a sa, b sb , 16Ž .
where q is the angle between vectors a and b. Finally Eq.
Ž .14 is rewritten as

ikXR2
s< <exp ik ryR sexp ikr exp yi k PR exp ,Ž . Ž . Ž . ž /2 r

17Ž .

where

1 2X s< <k s k =R . 18Ž . Ž .2kR

< <Because the denominator ryR is a function which
changes smoothly and slowly, we may use just r instead

< <of ryR ; therefore we finally get:

exp ikrŽ .
sw r sexp i kPr y d Rexp yi k PRŽ . Ž . Ž .H

4p r

ikXR2

=exp S E exp i kPR . 19Ž . Ž . Ž .ž /2 r

< : ² <By using the closure relation Hd R R R s1 and
Dirac bracket notation, we obtain

1 exp ikrŽ .
Xs² < < :w r sexp i kPr y k S E k , 20Ž . Ž . Ž . Ž .

4p r

where

SX E sV X qVG E V XqVG E VG E V X q . . . ,Ž . Ž . Ž . Ž .
21Ž .

X X 2 xV R ,r sexp ik R r2 r V R . 22Ž . Ž Ž . Ž .Ž .
Ž .Physically the pertinent quantity in Eq. 20 is the

Ž s .scattering amplitude f k ,k,r , which we can define by
setting

exp ikrŽ .
sw r sexp i kPr q f k ,k ,r , 23Ž . Ž . Ž . Ž .

r

so that we get the expression of the scattering amplitude

1
Xs s² < < :f k ,k ,r sy k S E k . 24Ž . Ž . Ž .

4p

In order to obtain the solution of scattering amplitude
Ž s .conveniently, we express f k ,k,r as

`1
s sf k ,k ,r sy f k ,k ,rŽ . Ž .Ý j4p j

`1 jy1 Xs² < < :w xsy k VG E V k . 25Ž . Ž .Ý
4p js1

< : ² <By inserting the closure relation Hdq q q s1, and using
the Fourier transform expression of Green’s function,

1 1
G̃ q sy , 26Ž . Ž .3 2 2q yk2pŽ .

Ž s .we express f k ,k,r asj

jy1 Xs s² < < :w xf k ,k ,r s k VG E V kŽ . Ž .j

s˜1 V k yqŽ .
˜sy dq f q ,k ,r .Ž .H jy13 2 2q yk2pŽ .

27Ž .

The tilde above the functions is used to express their
Fourier transforms.

3. Special application to 1-D BFOs

The 3-D geometric scheme of 1-D focusing Bragg-
Fresnel optics is shown in Fig. 1. Due to separability of the
electric susceptibility and the linear diffraction pattern, the
complex dielectric constant does not change along the y
axis. We can assume that the spatial dependence of the

Ž .electric susceptibility x x, z of the medium satisfies the
following condition,

x x , z sx x x z . 28Ž . Ž . Ž . Ž .x z

Ž .Then the scattering potential V R can be written as

V R sV x V z . 29Ž . Ž . Ž . Ž .x z

For the 1-D focusing diffraction pattern we chose, its
ŽFourier transform i.e. the lateral component of the Fourier

.transform of the scattering potential behaves as a distribu-
tion which is similar to a Dirac distribution. Thus we

Ž .obtain the following Fourier transform of V R :

˜ ˜V q s2pad q V q , 30Ž . Ž . Ž . Ž .x z z

Ž .where qs q ,q and a is a constant.x z

Fig. 1. The 3-D geometric scheme of 1-D Bragg-Fresnel optics.



( )Z. Le et al.rOptics Communications 149 1998 223–229226

In order to calculate the scattering amplitude, we de-
Ž .duce each component of Eq. 25 , in a first stage, accord-

Ž . Ž . Ž .ing to Eqs. 22 , 25 and 30 . We get:

1
X˜ ˜f q ,k ,r sy V qyk ,rŽ . Ž .1 4p

X˜1 V q yk ,rŽ .x x x
sy

4p 2pa

=
X˜2paV q yk ,r , 31Ž .Ž .z z z

˜ X ˜Ž . Ž .where we may replace V q yk ,r by V q yk , whichz z z z z

is valid because the penetration depth of radiation is of the
same order as the wavelength in our case. By using Eq.
Ž . Ž .27 and 30 , we obtain

˜ X s1 V q yk ,rŽ .x x x
f̃ q ,k ,r syŽ .2 4p a

s˜dq aV q yqŽ .z z z z ˜= aV q yk ,Ž .H z z z22 s2p q y qŽ . Ž .z z

32Ž .

that is

˜ X s1 V q yk ,rŽ .x x x z˜ ˜f q ,k ,r sy f q ,k , 33Ž . Ž .Ž .2 2 z z4p a

where

s˜dq V q yqŽ .z z z zz 2˜ ˜f q ,k sa V q yk ,Ž . Ž .H2 z z z z z22 s2p q y qŽ . Ž .z z

34Ž .

where q s and q s correspond, respectively, to the fre-x z

quency representation of k s and k s.x z

It is obviously that the integrator on the right-hand side
Ž .of Eq. 34 is only related to the variable z, so it stands for

an unpatterned multilayer structure and is expressed as
z̃ Ž .f q ,k .2,UE z z

Using the same reasoning and assumptions, we can get

z̃ j z̃f q ,k sa f q ,k , 35Ž .Ž . Ž .j z z j,UE z z

˜ X s1 V q yk ,rŽ .x x x z˜ ˜f q ,k ,r sy f q ,k . 36Ž . Ž .Ž .j j z z4p a

By performing the summation over j and by factorizing
the term corresponding to the lateral component, we can
finally get:

˜ X s1 V q yk ,rŽ .x x xs z s˜f k ,k ,r sy f q ,k , 37Ž . Ž .Ž .eff ,UE z z4p a

˜ X sŽ .where V q yk ,r is related to the Fourier transform ofx x x

the lateral component of the scattering potential and

q`

z s j zf̃ q ,k s a f q ,k 38Ž .Ž .Ž . Ýeff ,UE z z j ,UE z z
js1

can be described by calculating the reflectivity of the
multilayer.

3.1. Lateral component of scattering potential of 1-D
BFOs and its Fourier transform

We have chosen a square-wave profile with straight
edges unbounded in the y direction, as shown in Fig. 1. In
such a diffraction pattern, the multilayer structure forms
strips along the y axis. We can describe its lateral profile
by the ‘rect’ function,

x x
Is rect y rect , 39Ž .ž / ž /' 'a 2 jq1 a 2 j

where a is the half-width of the center zone in the
diffraction pattern, j is a positive integer within the range
w x Ž .0, N N is used to describe zone numbers . The ‘rect’
function is generally defined as follows:

x < <0 x Gb ,
rect s 40Ž .½ž / < <1 x -b.b

Then the lateral component of the scattering potential can
be written as

N x x
V x s rect y rect . 41Ž . Ž .Ýx ž / ž /' 'a 2 jq1 a 2 jjs0

Now we calculate the Fourier transform of the scatter-
ing potential, Generally the Fourier transforms of scatter-
ing potential are described as follows:

q` q`

Ṽ q s d x d z V x , z exp i q xqq z ,Ž . Ž . Ž .Ž .H H x z
y` y`

42Ž .

kX x 2 qz 2q` q` Ž .
XṼ q ,r s d x d z exp i V x , zŽ . Ž .H H ž /2 ry` y`

=exp i q xqq z , 43w xŽ . Ž .x z

and the Fourier transforms of the scattering potential can
be separated because scattering potential function can be
separated.

˜ ˜ ˜V q sV q V q , 44Ž . Ž . Ž . Ž .x x z z

˜ X ˜ X ˜ XV q ,r sV q ,r V q ,r , 45Ž . Ž . Ž . Ž .x x z z
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where

r
X 2Ṽ q ,r sexp yi qŽ . Xx x xž /2k

X 2ik rq`

= exp xq q V x d x .Ž .H X x xž /2 r ky`

46Ž .

Ž . Ž .By substituting Eq. 41 into Eq. 46 and using a Fresnel
Ž .integrated formula written as Fr :

p p
2 2C s cos t d t , S s sin t d t , 47Ž .H Hf fž / ž /2 2

we finally get:

p r r
X 2Ṽ q ,r s exp yi qŽ . X X(x x xž /k 2k

Xrq kxjq1 '= y1 Fr a j qŽ .Ý (Xž /½ k p rj

Xrq kx'qFr a j y , 48Ž .(Xž / 5k p r

w xwhere the range of the summations is 0, 2 Nq1 . Because
every zone in diffraction pattern has to be calculated, the
calculation is very much time consuming with large zone
numbers.

3.2. ReflectiÕity of unpatterned multilayer structure

There have been many methods to calculate the reflec-
tivity of a multilayer structure; a review of the various

w xmethods was given by Pardo et al. 6 . Our research group
has developed a method to calculate the performances of a
multilayer, and we describe it here briefly.

When a plane wave with wavelength l acts on the
multilayer mirror, the reflectivity of the multilayer mirror
can be described by the Bernning formula:

r 1yr R q R yr exp yidŽ . Ž . Ž .j j jy1 jy1 j j
R s ,j 1yr R qr R yr exp yidŽ . Ž .j jy1 j jy1 j j

js1,2, . . . ,m , 49Ž .
with

4p N d cos w sin qŽ . Ž .j j j
d s , sin w s ,Ž .j j

l Nj

N sn y ik , 50Ž .j j j

where R , R are, respectively, the reflectivity of aj jy1

multilayer structure with j layers and with jy1 layers, rj

is the Fresnel reflective factor of the material of the jth
layer. The successive iterations go from 1 to j. q is the
incoming angle, N is the complex index of refraction, dj j

is the thickness of each layer.

< <Because r <1 is valid for all materials in the X-rayj
Ž .region, we can simplify Eq. 49 to

R sr q R yr exp yidŽ . Ž .j j jy1 j j

sr qD R yr exp yib , 51Ž .Ž . Ž .j j jy1 j j

where

D sexp y4p b d rl , b s4p a d rl,Ž .j j j j j j

N cos w sa y ib . 52Ž . Ž .j j j j

According to the theory above, we developed a set of
numerical programs to calculate the reflectivity of a multi-
layer mirror and optimum thickness of each layer, etc. This

w xmethod has been described in more detail in Ref. 7 .

3.3. Diffraction efficiency and scattered power density of
1-D BFOs

After obtaining the scattering amplitude results, we will
calculate the diffraction efficiency and scattered power
density of BFOs in connection with the scattering ampli-

Ž s .tude f k ,k,r . The calculation is more complicated than
for mirrors, diffraction gratings and other optical systems
involving Fraunhofer diffraction. When we deal with a
quantum scattering problem, we consider the angular dis-
persion and different qualities of the scattering particles
but not the energy eigenvalue. Because the position of the

Žobservation point r4l the wavelength of the radiation
.particles , the angular dispersion function depends on the

performance of the wave function at r™` and is related
to the energy of the radiation particles and the interaction
between radiation particles and scattering potential. From

Ž .Eq. 23 , we know that the scattering wave function is
described by

1
sw r sexp i kPr q f k ,k ,r exp ikr , 53Ž . Ž . Ž . Ž . Ž .

r

where the first term refers to the incident wave and the
second term to the outgoing scattering spherical wave. If
the incident particle flow density is defined as J , then thei

outgoing particle flow density J is:s

< s < 2 2J sJ f k ,k ,r rr . 54Ž . Ž .s i

Thus, the scattered power density can be described as
follows:

dW k s,k ,rŽ . 2s 2< <sC f k ,k ,r rr , 55Ž . Ž .
d s

where C is a constant. For a perfect diffraction pattern, we
consider as1r2. Then we get

1
Xs s z s˜ ˜f k ,k ,r sy V q yk ,r f q ,k . 56Ž . Ž .Ž . Ž .x x x eff ,UE z z2p
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Ž .According to Eq. 30 , for the real foci at the specular
direction case, the power density can be described by

dW k s,k ,rŽ .
X 2 2z s s˜< < < <sC B f q ,k d k ,k ,Ž . Ž .j eff ,UE z z x xd s

57Ž .
Ž .where B is a factor which can be obtained by Eq. 48 . Byj

analogy with the diffraction theory of gratings, we can
describe the notion of efficiency h of a focus j for aj

perfect diffraction pattern as follows:

< z < 2f yk ,kŽ .eff ,UE z zX 2< <h sC B . 58Ž .j j 22pŽ .
According to

q` 21 p
s , 59Ž .Ý 2 42mq1Ž .ms y`

we finally obtain the total efficiency for all the foci:

< z < 2hs f yk ,k . 60Ž .Ž .eff ,UE z z

4. Numerical application results

The parameters of the 1-D BFO that we designed are as
follows. The multilayer structure consists of 40 molybde-
numrsilicon layers at 18 nm wavelength. The molybde-

Ž . Ž .num Mo layers are 3.04 nm thick and the silicon Si
layers are 6.36 nm thick. The diffraction pattern consists of
99 zones; the half-width of the center zone is 60.45 mm
and the outermost zone is 3.045 mm.

In Fig. 2, we show the curves of efficiency at the first
focus, second focus and all the foci of 1-D BFO versus the
incoming angle. For sake of comparison, we also present

Ž .Fig. 2. a Multilayer structure reflectivity versus the incoming
Ž .angle. BFO efficiency versus the incoming angle for: b All foci:

Ž . Ž .c 1st focus; d 2nd focus at wavelength of 18 nm. The multi-
Ž . Ž .layer structure consists of 40 Mo 3.04 nm rSi 6.36 nm layers.

Fig. 3. Curve 1: efficiency of BFO versus the number of layers of
the multilayer structure. Curve 2: reflectivity versus the number of
layers of the multilayer structure; the multilayer structure consists

Ž . Ž .of 40 Mo 3.04 nm rSi 6.36 nm layers.

Fig. 4. Power density of the light diffracted in the specular
direction versus the distance of observation.

the theoretical reflectivity of the corresponding multilayer
structure. Fig. 3 gives the reflectivity of the multilayer
structure together with the efficiency of the 1-D BFO
versus the number of layers. Fig. 4 gives the power density
of the light diffracted in the specular direction versus the
distance of observation.

5. Conclusion

The quantum model that we have presented in this
Ž .2paper is valid under the condition lra <1, and a

completely mathematical process and some essentially nu-
merical applications would confirm this assertion. An ex-
ample of the simplest diffraction pattern, i.e. 1-D diffrac-
tion pattern, is described in detail. The method can be
easily generalized to other different diffraction patterns
Ž .circular or elliptical, etc. , but the mathematical process
will probably be complicated.
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