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1 Introduction The figure of merit usually used to characterize the sen-

In recent years, the direct-narrow-bandgap GalnAsSb qua-Sitivity of IR PV detectors is the detectivitp™*, which
ternary alloys—whose wavelength, ranging from 0.87 to 12 depends on the quantum efficiency and the zero-bias
um, covers three important infrared wavelength ranges ~ resistance—junction-are&¢A) product,
to 4, 3to 5, and 8 to 12m)—have become very important

materials for the fabrication of detectors designed for A7q [ RoA\Y?
infrared-wavelength applicatiot? GalnAsSb quaternary D*:h_c (m)

alloys lattice-matched to GaSb are potentially useful mate-
rials for detectors in the 2- to &4m wavelength rangé?

For example, a GalnAsSb/GaSh infrared detector at wave-
lengths from 1.7 to 2.4um has been preparéd.

However, no theoretical analysis of the GalnAsSb detec-
tor has been reported so far. In this paper, theoretical cal-
culation and analysis results for a &g ASy 105k g1 IN-
frared photovoltaidIR PV) detector, whose wavelength is
2.5 um with a 300-K operating temperature, are reported.

Among noise mechanisms in narrow-bandgap materials,
the Auger mechanism is the most important mechanism for «_m
the performance of an IR PV detector working near room Eg
temperatur&’ Therefore, we consider the effect of the Au-
ger mechanism on a GalnAsSb homojunction detector 2. The quantum efficiency; is 100%; thus Eq. 3 is

)

In the following calculation, several assumptions are
made:

1. Infrared radiation of wavelength shorter than the
cutoff wavelength\ . is absorbed by the detector and
produces electron-hole pairs, which produce the dif-
fusion current. When we assume=\.=hc/E,, Eq.

(2) can be expressed by

ROA)I/Z

KT ©

lattice-matched to GaSbh. further simplified to
1/2
.9 [FA "
Eg |4KT

2 Detector Structure and Theoretical Analysis

The detector structure of n-Galn;_,As; ,Sh,/ When the temperature and the compositienandy are
p-GalIn;_xAs;_,Sh,/GaSb is shown in Fig. 1. Because it fixed, the energy bandgéap is also fixed, so that the de-
is required that the GalnAsSb quaternary alloys be lattice- tectivity is only related to th&oA product.

matched to GaSb, the compositigris related to the com- We consider the diffusion current only in a low-injection
positiony by case, in which the diffusion current is due to the minority
carriers. Then th&®gA products in then andp regions are
0.40%+ 0.022 " given respectively by

y: 1
0.00%+0.421 RA _ KT Dep re sinh 6+coshé
(Ro )e_? L.n? coshé+sinh &
where the GalnAsSb lattice constant is gotten by a linear
interpolation methodsee the appendixIn the following, .
we only give the calculation results for the compositioat (ROA)p:g Dpr12 rp Sinh 6+ cc.)sha
0.8, at which the corresponding compositipris 0.81. q° Lpnj rp coshé+sinh 6

(p region, (5

(n region (6)
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Fig. 1 Simplified structure of a detector: t, n-region width; d,
p-region width; w, width of depletion region; x,,, width of depletion
region on n side; x,, width of depletion region on p side.

KT LS
Di=— i, Li=(Dim)¥ y=—=— (i=n or p),
q Di
o= ! d n 0= ! P
B T C W L e
where

D; = diffusion coefficient (crifs) for holes inn
region or for electrons ip region
L; = diffusion length(cm) for holes inn region or
for electrons inp region

wi = effective mobility (cnf/V s) for holes inn
region or for electrons ip region

S = surface recombination velocityn/s) for holes
in n region or for electrons ip region

7i = carrier lifetime(s) for hole inn region or for
electron inp region

g = electronic charg€C)

T = detector temperaturg)

k = Boltzmann’s constant

n,p = major-carrier concentrations (Crf) in n region
and p region, respectively

N = intrinsic carrier concentration (crm).

These relations are fulfilled for the one-dimensional detec-
tor model with an abrupt junction where a spatial charge of
width w surrounds the metallographic junction boundary
x=t, and two quasineutral regions {6,x,) and (
+Xp,d—X;,) are homogeneously doped.

The diffusion current contributions from the and p
regions are added to give the total diffusion current, and the
total RyA product from both sides 8

1 1 1

(RoA) om (RoA)e | (RoA),” 0
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In Egs.(5) and(6), theRyA products are incorporated in
the minority-carrier lifetime, determined by the Auger
mechanism.

Among the ten different types of Auger processes that
are possible in an InSb-like band structure, the two with the
smallest threshold energy—AugerfA-1) and Auger 7(A-
7)—are the ones of practical importance!®Because the
band structure of the GalnAsSb quaternary alloys is com-
plicated, it is simplified to an InSb-like band structure in
this paper. In narrow-bandgap materials, when the spin-
split-off band has width near to or wider than the energy
bandgapE,, the spin-split-off band plays a much more
important role than A-7 in the Auger mechanism for direct-
bandgap materials, and the resulting process is called Au-
ger S(A-S). For Gg glng 2ASy 105k g1 at 300 K, the width
of the spin-split-off band is 0.605 eV, while the energy
bandgap is 0.494 e\see the appendixso we include A-S
in the calculation. The A-1 mechanism is dominant in
n-type materials, while A-7 and A-S are dominant in
p-typel*1S The carrier lifetime associated with the Auger
mechanism determines the performance of most near-room-
temperature PV detectors.

The effective carrier lifetime can be determinedby

1

TA

1 1 1
—+—+—.
TA-7

®

The lifetimes for the A-1, A-7, and A-S mechanisms are
written respectively &8

i
27pq

A= T 0y /Dy’ 9
27p7

7'A-7——1+p0/n0, (10
ZTEA\-S

(11)

wherepy andng are the hole and electron carrier concen-
tration at equilibrium state in the same material, atd
indicates the intrinsic recombination time.

The intrinsic A-1 recombination lifetime is given Hy

1+2u Eq
1+u ﬁ

3.8x10 e (1+ u)YA(1+ 2M)exp(

T) 3/2

Eq

i
A1~

*

me
— [F4F,f?
o

12

where

mu=mi/my = ratio of the conduction-band to the
heavy-hole valence-band
effective mass

= relative static dielectric constant
= electron static mass

€s
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Fig. 2 The calculated RyA product as a function of the p-side carrier concentration for a GalnAsSbh
PV detector operated at 300 K and 2.5-um wavelength; d=5 um, t=1um, u,=240 cm?V's, ue

=2900 cm?/V s.

F..F>

= overlap integrals of the periodic part of

the electron wave function.

The intrinsic A-7 recombination time is given By

i
TaA7=YTa1»

where vy is the ratio of the A-7 to the A-1 intrinsic recom-

bination time. According to Ref. 12,

Mm% (Ey) 1—5E/4KT
mf, 1-3E4/2KT’

4}/:

The intrinsic A-S recombination time is calculated using
theory described in Ref. 17:

Semp,mes YKTAX(Eg+A)expA—E4/KT)

13

(14

TAs™

54m*n?e* s mE (A —E,)
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3 Calculation Results

The calculations have been performed for amp

Ga glng 2ASy 105k g1 PV detector operated at 300 K and
2.5-um wavelength. The dependence of the material pa-
rameters of GalnAsSb alloys that are needed for calculating
the compositionx andy is given in the appendix.

3.1 RyA Product

Figure 2 shows thé&yA products in then and p regions
and their sum as functions of the carrier concentrations in
those regions, for various values of the illuminated-surface
recombination velocitys, and back-surface recombination
velocity S, where the widths in the andn regions are 5
and 1um, respectively, and the mobilitigs, and u, are
240 and 2900 cAiV s, respectively. These results are got-
ten through Eqs(5), (6), and(7).

First, theRyA product in thep region, ReA)., is ana-
lyzed.

1. A similar situation exists in the four parts of Fig. 2, in
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Fig. 3 The effect of the back-surface recombination velocity on the
(RoA), product.

that increasing the carrier concentration in thee-

gion will not affect RyA).. Thus, Eq.(5) can be
approximated by

KT Dgp re sinb(d/Lg)+cosHd/L,)

)e_? Len? re cosHd/Lg)+sinh(d/Ly)

(16)

. When the back-surface recombination velocity is not
equal to O[see Fig. Zc) and 2d)] and then-side
carrier concentration is larger thanI@m3, the
(RoA)totar Product is almost entirely due to the
(RoA) e product: RoA) ota= (RoA)e - Under this con-
dition the n-side carrier concentration is larger than
the p-side carrier concentration, and the structure is
called then™p structure. In general, the*p struc-
ture requires a carrier concentration in theegion
larger than 18! cm™3 and a width less than Lm.
We discuss th@™ p structure later.

. As the back-surface recombination velocity increases
from 0 to 100 m/s, theRyA). product decreases by
nearly three orders of magnitude, and the peak of the
(RpA). product is moved to the direction in which
the p-side carrier concentration increases. Figure 3
shows the explanation. On increasing back-surface
recombination velocity, the peak of thR{A) . prod-
uct will clearly decrease and move in the direction of
the larger p-side carrier concentration. AtS,
=10° m/s, the peak of theRyA), product disap-
pears.

Secondly, let us consider th&k{A), product in then
region.

1. When the carrier concentration in thme region is
larger than 1& cm™3, the (RyA), product will be
independent of the carrier concentration in fhee-
gion. Thus, Eq(6) can be approximated as follows:

KT Dyn r,, sinh(t/L,)+cosht/L
Ry L S TS (g
q Lpni rpcoshit/Ly)+sinh(t/Ly)
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Fig. 4 The effect of the illuminated-surface recombination velocity
on the (RyA), product.

2. When the illuminated-surface recombination velocity
is equal to 100 m/$see Fig. 20) and 2d)] and the
carrier concentration in the region is less than
10" cm™3, the (RoA)a Product can be expressed
by (RoA)ota= (RoA)p, in which the carrier concen-
tration in thep region is in the range of 16 to
10'® cm~3. Because the intrinsic carrier concentra-
tion in GagngASy15kh g, material is near
10 cm 3, the np structure can be treated as an
i(n7)-p structure. If n-type material is grown in
front of thei(n™)-p structure, the detector structure
becomes am-(i)-p structure and thus effectively
suppresses the Auger process. Such a device is called
an extracting detectdf:®

. When the illuminated-surface recombination velocity
is equal to zerdsee Fig. 2a) and 20)], the (RoA),
product will decrease with increasingside carrier
concentration, whereas the contrary occurs when the
illuminated-surface recombination velocity is equal
to 100 m/qsee Fig. 2) and Zd)]. This phenomenon
is explained in Fig. 4, which shows the effect of dif-
ferent illuminated-surface recombination velocities
on the RyA), product. The results in Fig. 4 are simi-
lar to those in Fig. 3.

From Fig. 3 and Fig. 4, we can see whether the back-
surface recombination velocity or the illuminated-surface
recombination velocity will seriously affect the perfor-
mance of a GalnAsSb detector.

In the following, we discuss the influence of material
parameters on the detectivity for different detector struc-
tures. The practical working limit for most IR detectors is
background-limited photodetectidiBLIP), in which opti-
cal generation resulting from thermal background radiation
exceeds the thermal component. The BLIP detectivity de-
pends only on the temperature and incident optical wave-
length. For a Ggglng ,Asy 105ty g1 IR PV detector working
at 300 K and 2.5um wavelength, the BLIP detectivity
reaches 4.98 10*2 cm HZ2/w.
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Fig. 5 The calculated detectivity of a GalnAsSh PV detector operated in an n*p structure as a
function of the p-side carrier concentration p and (a) the back-surface recombination velocity S, ; (b)
the p-side width d; (c) the p-side mobility u,. The BLIP detectivity has been calculated for Tg

=300 K and »=1.

3.2 An n"p-Structure Detector KTpre

The realization of Gdn, _,As; _,Sh, PV detectors is usu- (RoA)e qznizLe' (18
ally based on am* p structure. For that structure, the junc-

tion resistance is limited only by diffusion of the minority ~Ford<L, (p<10'cm3),

carrier from thep side into the depletion regiofi. The

above discussion indicates that thep structure can be 1, _KTpLered/Letl 19
regarded as an”p structure if the back-surface recombi- 07Ve qzni2 De retd/le

nation velocity is not equal to zero. Figure 5 shows the

dependence of the detectivity for ai p-structure detector  if d/L. is neglected in Eq(19),

on the material parameters in thge region, such as the

width d, the mobility ,,, and the back-surface recombina- (RoA) o= KTp 20
tion velocity Ss. 0Ve™ g2n?s,

The effect of the back-surface recombination velocity on
the RyA product has been discussed.
D* o[ (RoA)oral M [EQ. (2)], it is an inevitable outcome
that the back-surface recombination velocity will have an
effect on the detectivity.

A common characteristic exists in each of parts of Fig.
5. When thep-side carrier concentration is larger than
107° cm™3, the detectivity remains constant on increasing
the p-side carrier concentration without variation of the
other parameters.

The dependence of the detectivity on theside carrier
concentration can be divided into three regions. In the
range of p<10'® cm 3, only the variation of the back-
surface recombination velocity will have an effect on the
detectivity; in the range op>10?° cm™3, only the p-side
mobility will have an influence on the detectivity. In the
p-side carrier concentration range of'i@ 10°° cm ™3, all
of parameters will affect the detectivity. Now, let us ana-
lyze the above results.

Because For d~L(10*%<p<10?° cm™3), one must use Eq(16)

itself.

Equations(20), (18), and (16) correspond to the three
regions mentioned. Fat<L,, the (RyA). product is inde-
pendent of the width and the mobility, whereas fb# L,
the (RyA). product is independent &, andd.

These results show that reducing the volume and de-
creasing the mobility in th@ region will increase the cor-
responding detectivity. Under the condition of tiimegion
(d<L,), the lower surface recombination velocity will im-
prove the detectivity.

Table 1 The relation of the electron diffusion length to the p-side
carrier concentration.

p-Side carrier concentration Electron diffusion length in p region,

A, . L p (cm~®) Le (um)
The electron diffusion length in the region is related to
thep-side carrier concentration. Table 1 shows the relation- p<10%® Lo>10?
ship. In view of Table 1, we subject E¢L6) to a further 10%< p<10%° 1072< L <102
approximation on the basis of the relationship betwegn p>10% L,<10"2

andd: Ford>L, (p>10?°cm9),
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Fig. 6 The calculated detectivity of a GalnAsSh PV detector operated in an np structure as a function
of the p-side carrier concentration p and (a) the n-side carrier concentration n; (b) the n-side width ¢;
(c) the n-side mobility u,. In the condition of S,=S,=0, u,=240 cm?/V's, and d=5 um, the BLIP
detectivity has been calculated for T3=300 K and n=1.
3.3 An np-Structure Detector 3.32 S,=0, S,=100 m/s
Figure 8 shows the influence of threside parameters on
331 S.=5,=0 the detectivity aB,=0 andS,= 100 m/s. The situation dif-

fers from that withS,=0 in two ways: the greater the
width and the larger the carrier concentration, the higher is
the detectivity. The influence of the-side parameters on
the detectivity is similar to that &,=S,=0; we do not
show the results here.

Figure 6 shows the effect of the-side parameters on the
detectivity atS,=S,=0; the results correspond to those in
Fig. 2@). Because RyA)oia= (RoA), in the range ofp
<10'% cm™3, the influence of thex-side parameters on the
detectivity takes place mainly in this range. In contrast, the
detectivity is mainly affected by thp-side parameters in 4 Conclusions

the range ofp>10" cm™, as is shown in Fig. 7. In the  Calculation and analysis of the effect of material param-
range of 16°<p<10" cm™3, regardless of the parameter eters of a Ggglng ASy 1Sk 1 IR PV detector on th&®,A
values in then region or those in the region, all of them product and the detectivity at 300 K have been worked out.
will affect the detectivity. It has been shown that:

10’ " ¥ " 10°

Dsui Dgiwp

d=20 10 8 5(1m)
P
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3
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Fig. 7 The calculated detectivity of a GalnAsSb PV detector operated in an np stucture as a function
of the p-side carrier concentration p and (a) the p-side width d; (b) the p-side mobility u,. In the
condition of S,=S,=0, n=10"" cm~3, and t=0.5 um, the BLIP detectivity has been calculated for
Tg=300K and n=1.
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Fig. 8 The calculated detectivity of a GalnAsSb PV detector operated in an np structure as a function
of the p-side carrier concentration p and (a) the n-side carrier concentration n; (b) the n-side width ¢;
(c) the n-side mobility u, . In the condition of S,=0, S,=100 m/s, d=5 um, and u,=240 cm?/V s,
the BLIP detectivity has been calculated for Tz=300 K and 7=1.

1. The optimum material carrier concentration at which
the greatest sensitivity of GalnAsSb detectors is ob-
tained depends on the surface recombination veloc-
ity. At S;=S,=0, then- and p-side carrier concen-

S,=100 m/s, the optimunm-side width is increased
to 5 um. The above results indicate that differe&t
require differentn-side widths.

trations are both required to be near the intrinsic
carrier concentration. AS, andS, increase, the op-
timum carrier concentrations also increase. For ex-

3. The other parameters, such as the electron mobility

Me, the hole mobilityu,, and thep-side widthd,
have little effect on the detectivity compared to the

surface recombination velocities and carrier concen-
trations. However, it is hoped to decreasg, ue,
andd to improve the detectivity.

ample, p-side carrier concentration is about
10" cm™3, and then-side carrier concentration is
larger than 1& cm 3 atS,= S,=100 m/s(see Fig. 3
and Fig. 4. The surface recombination velocity and
carrier concentration are the main influences on the
detector sensitivity. with high back surface recombination velocty and large

2. The optimumn-side widtht at which the greatest P-side widthd. In order to reducé,, it is advantageous to
detectivity is obtained also depends on the usenpp’ structures, since the potential barrier between the
illuminated-surface recombination velocity. A3, p- andp ™ -type regions limits the flow of minority carriers
=0, then-side width must be very smalt-0). At to the region with more impuritieSBut the very high ther-

The most disadvantageous structure is that of a detector
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Table 2 Parameters of binary alloys for Eq. (Al).

Alloy Ey(T) (eV) A my my; m% €, ao
GaSb (a;)  0.810-3.7810 “T2/(T+94) 0.8 0.045 049 0.14 15 6.08
GaAs (ay) 1.519-5.4010 47%/(T+204) 034 0067 045 0.15 109 5.65
InSh (as) 0.236-2.9910"4T?/(T+140) 0.81  0.014 0.6 0.107 17 6.479

INAs (ay4) 0.420-2.5010"4T?/(T+75) 038 0.023 041 0089 145 6.058

mal generation of charge carriers to thé region will The parameters of the binary and ternary alloys that are
highly reduceR,A andD* of the detector. So utmost care relevant to quaternary alloys GalnAsSb are shown in Table
has to be taken with contact and passivation technology to2 and Table 3, respectively.
reduceS, .*°

It should be noted that the effect of structure on the >-1 Energy Bandgap
detectivity is assumed to be determined by the diffusion Tian et al?! have given a formula for the energy bandgap
component of current density, caused by the Auger mecha-of GalnAsSb quaternary alloys,
nism. The results will be altered if other mechanisms are
considered, such as the radiative mechanianother dif-
fusion component of the current dengity the generation-  Eg(X,y,T)=Eg (X,y,T) —bow(X,y) (A3)
recombination mechanism in the depletion region.

In this paper, degeneracy has been neglected in the thewhereEy (x,y,T) is given by Eq.(Al), for which the cor-

oretical analysis of the Auger mechanism in order to sim- responding binary- ;
. ) . y-alloy parameteks,(T) are shown in
plify the discussion of the performance of the GalnAsSb Table 2. Likewise, bow(x,y) is given by Eq.(A2), for

dete_ctor, though a degenerate stailge exists in material wr[hWhiCh the ternary-alloy parametefenergy bandgapsare
carrier concentrations up to ¥ocm3, shown in Table 3

In conclusion, the theoretical performance of a g2rs-
Gay glng 2ASp 195k 81 infrared photovoltaic detector work- 5.2 spjin-Split-Off Band
ing near room temperature has been analyzed. Through cal-_l_h f las for th in-split-off band &7
culating and analyzing the influence of the all material pa- e formulas for the spin-split-off ban €
rameters, the optimum performance of the GalnAsSh IR

PV detector has been obtained. These results will provide aA(x,y)=[1—f(X,y)]Aq(X,y), (A4)
useful basis for the fabrication of GalnAsSb IR PV detec-
tors.
5 Appendi fxy) = DY) (A5)
endix )= — '
PP E(x,y)

The parameters of quaternary alloys such as GalnAsSb
have more complicated expressions than those of ternary
alloys. In general, these parameters, which are deducible 1 1 2 1

from those of binary and ternary alloys, are obtained by E(x,y) -3 Eo(X,Y) + Eo(X,y) +Ag(X,y) |’ (AB)
linear interpolatiof’
a=xya; +x(1—y)a,+y(1l—x)az+(1-x)(1-Yy)a,, D(x,y)=bow,(X,y), (A7)
(A1)
whereAy(x,y) is obtained from Eq(Al), and bow from
bow=[(1—Xx)b;+xb,]y(1—y) Eq. (A2), for which the relevant parameters are shown in
Table 2 and Table 3, respectively.
+[(1=y)bg+ybs]x(1—x). (A2) In this paper, only the energy bandgap and the spin-
split-off band are obtained from the revised formulas. The
other parameters are obtained directly by linear interpola-
Table 3 Parameters of ternary alloys for Eq. (A2). tion [Eq. (AL)].
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