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Analytic expression for Fresnel diffraction
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1. INTRODUCTION
This paper concerns diffraction, which has considerable
significance in optics. Since the publication of Durnin’s
papers on nondiffracting beams,1,2 diffraction has been
the subject of many papers expressing different views.3–9

The different views have resulted from different under-
standings of the physical nature of diffraction. Up to
now, analytic expressions for Fraunhofer diffraction have
been given. However, as far as we know, no similar so-
lution to Fresnel diffraction has been presented. Nu-
merical methods and the fractional Fourier transform
have been used by some authors10–17 to calculate the in-
tensity distribution of Fresnel diffraction. In this paper
we suggest an analytical expression that is convenient for
calculating the amplitude and intensity of Fresnel diffrac-
tion. We also point out the essential difference between
Fresnel diffraction and Fraunhofer diffraction. The lat-
ter occurs only under a special condition, i.e., M 5 0 or
M/2b 5 0. Without this condition, Fresnel diffraction oc-
curs.

2. GENERAL CASE: FRESNEL
DIFFRACTION
By the general case we mean that the receiver screen fails
to pass through the spherical-wave center; the diffraction
that occurs is called Fresnel diffraction, which is
divergent-wave diffraction, as shown in Fig. 1. The
spherical-wave center and the receiver screen lie on oppo-
site sides of the diffraction screen.

From the Fresnel–Kirchhoff diffraction formula, we
know that
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From Fig. 1 we obtain
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We also know that

ds 5 R2 sin ududa. (8)

When u is very small, then

ds ' qdqdu. (9)

Placing Eqs. (7) and (9) into Eq. (4), we obtain
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Using the partial integral method, we obtain
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where

Ẽ0 5 A
exp@ik~R 1 b !#
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(12)

and Ẽ0 is the amplitude of point p0 on the receiver screen
when the light travels in straight lines.
Let

N 5
a2
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, (13)

where N is the Fresnel coefficient. For plane-wave dif-
fraction, N is the half-period zone number. For
spherical-wave diffraction, MN is the half-period zone
number. Placing k 5 2p/l and N into Eq. (11), we get
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With the Bessel function, we obtain
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From J2n(x) 5 (21)nJn(x) we obtain
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Fig. 1. Divergent-wave Fresnel diffraction.
From the character of orthogonal polynomial, we obtain
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We also know that
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From Eqs. (14), (18) and (19), we obtain
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which is called amplitude decay coefficient.
The intensity distribution is

Fig. 2. Convergent-wave Fresnel diffraction.
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Fig. 3. Intensity distribution of Fresnel diffraction.
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Equation (20) is the amplitude formula for Fresnel dif-
fraction, and Eq. (22) is the intensity distribution formula
for Fresnel diffraction.
In calculating the intensity of point p0 , under the
Fresnel diffraction condition, since r 5 0 and D 5 1 Eq.
(22) is transformed to
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where
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a 5 A mRb
R 1 b

l ~bright half-period zone!,

a 5 A2mRb
R 1 b

l ~dark whole-period zone!,

and m is a positive integer.
The conclusions above are identical with the results ob-

tained by means of half-period zone construction and the
graphical vector method.

Figure 2 shows convergent-wave diffraction; thus
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When there is plane-wave diffraction, M 5 1, and Eq.
(23) is transformed to
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The intensity distributions of Fresnel diffraction are
shown in Fig. 3 for different M and N.

Fig. 4. Intensity distribution of Fraunhofer diffraction.

Fig. 5. Diagrammatic sketch of M value.
3. SPECIAL CASE: FRAUNHOFER
DIFFRACTION
Only when the receiver screen passes through the
spherical-wave center will there be convergent-wave dif-
fraction. Now R 5 b, M 5 0, and Eq. (10) is trans-
formed to
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The integral is simple. We obtain
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The intensity is
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where

I0 5 p2a4~Ẽ0Ẽ0* !. (28)

The intensity distribution of Fraunhofer diffraction is
shown in Fig. 4.

4. CONCLUSION
For the straight propagation of light (no diffraction taken
into consideration), M means the ratio of the radius rm of
the disk on the receiver screen to the radius a of the cir-
cular aperture, as shown in Fig. 5. With a divergent
spherical wave, M . 1; with a convergent spherical
wave, M , 1; and for plane waves, M 5 1. Now the
equation M 5 0 is obtained when there are convergent
spherical waves and the receiver screen passes through
the center of the spherical wave, and with the diffraction
of plane waves, the equation M/2b 5 0 is obtained when
the receiver screen is located at infinite distance. In such
a case (M 5 0 or M/2b 5 0) Fraunhofer diffraction oc-
curs; otherwise, there is Fresnel diffraction. And so it
may be said that Fraunhofer diffraction is a special occur-
rence of Fresnel diffraction. It is the intensity distribu-
tion of Fraunhofer diffraction that is observed in most op-
tical systems in which the receiver elements are located
on the image plane (M 5 0), and therefore Fraunhofer
diffraction is of great importance in engineering. The
distinction between Fresnel diffraction and Fraunhofer
diffraction can be seen in formula (10): When M 5 0 or
M/2b 5 0, then exp@ik(M/2b)q2# 5 1 and the integral be-
comes simple, which is why the analytic expression for
Fraunhofer diffraction was found earlier. When M Þ 0
or M/2b Þ 0, the integral is complex; however, this paper
presents the first (to our knowledge) analytic expression
for Fresnel diffraction obtained by strictly mathematical
derivation.

It was firmly believed in classical documents that if
k(M/2b)a2 ! p, there will be Fraunhofer diffraction.18–20



688 J. Opt. Soc. Am. A/Vol. 15, No. 3 /March 1998 Wang et al.
Certainly, the intensity distribution of Fresnel diffraction
that has been obtained when MN is very small (such as
MN < 1) is similar to Fraunhofer diffraction, as shown in
Fig. 3(a), but it still is Fresnel diffraction.

It should be noticed that the expression has been de-
rived under the condition that the Kirchhoff inclination
factor is thought to approximate one. MN means the
Fresnel half-period zone. With a plane wave, MN 5 N,
N is known as the Fresnel number in some of the litera-
ture. N is in fact the Fresnel half-period zone that ap-
pears when plane waves are diffracted. The diagram of
the intensity distribution resulting from calculations in
this paper is equivalent to those given in Refs. 11 and 14.
The principles given here have also been applied to the
calculation of the intensity distribution of lasers and to
the design of a diffraction grating with high chromatic
dispersion (Dl 5 0.005 nm) and wider slits (0.016 mm).
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