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Construction of General Unitary Transformation for Conditional Quantum 
Dynamics and Realization of Quantum Controlled Gates * 
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2Department o f  Computer Engineering, Changchun University, Changchun 130022 

(Received 20 October 1997) 

B y  factorizing a general one-bit transformation matrix for one-bit gates in quantum computer, a general unitary 
transformation is constructed, which can serve as (controlled)” gate for the conditional quantum dynamics. 
When the quantized single-mode electromagnetic field containing n or no photons acts as the controlled bit, the 
quantum controlled-NOT gates and square root o f  the controlled-NOT gates in cavity-quantum electrodynamics 
are realized . 

PACS: 03. 65. Bz, 42.50. - p ,  89.80. +h 

Recently, there is considerable interest. in quan- 
tum computation.1-6 The combination of quantum 
mechanics and computer science makes great devel- 
opments in information theory. The quantum exten- 
sion of conventional Boolean bits is called qubits (two- 
state systems). The examples include the spin-half 
particle4 with spin up corresponding to 1 and spin 
down to 0,4 the polarization of a photon with clock- 
wise polarization corresponds to  1 and counterclock- 
wise to 0,5,6 and two-state atom with excited state 
corresponds to  1 and ground state to  0.5 The com- 
putation proceeds by manipulating these qubits using 
quantum logic gates which are input-output devices 
(unitary transformations). The quantum logic gates 
are combined together to  form a quantum network and 
the quantum network forms a quantum computer. 

Duetsch7 proposed a universal three-bit logic gate 
and Divencenzo’ showed later that this three-bit gate 
can be implemented by an arrangement of two-bit 
gates. Sleator et  aL5 showed then that a two-bit gate is 
universal and made an interesting experiment aiming 
at  constructing quantum gate prototypes with cavity- 
QED (quantum electrodynamics) techniques. They 
only proposed the quantum (controlled)’ gates, the 
most general (controlled)m gates were not considered. 

The most important two-bit gates are represented 
by a 4x4  unitary transformation matrix U in the com- 
putational basis { I  b}’},  the direct product of the 
two qubits, a ,  b E (0, 1},2 

with 

I = ( ; .  ;), 

1 cos 4 exp( -i 0) sin q5 
cos q5 ‘‘7 = ( - exp(i e) sin 4 

where q5 and 8 are real values. 
The first bit a is called the control bit and the sec- 

ond bit b the target bit. Under the transformation 
U, .  the control bit is never changed. But it decides 
whether the target bit undergoes a unitary transfor- 
mation. When the control bit is in state I O } ,  , the 
target bit is invariant. When the control bit is in state 
i 1)1, the target bit experiences a unitary transforma- 
tion described by V. This is the so-called “conditional 
quantum dynamics”. 

For 8 = - ~ / 2  and 4 = 7 / 2 ,  the transformation U 
reduces to 

1 0 0 0  

O O i O  

(3) 

Besides a common phase factor, this is the quan- 
tum controlled-NOT gate which has many applica- 
tions such as quantum state swapping and quantum 
state t e l ep~r t a t ion .~  In order to construct a general 
unitary transformation for the conditional quantum 
dynamics, we try to factorize the transformation V. 

The one-bit transformation matrix V can be ex- 
pressed in terms of Pauli matrixes U as 

V = cos q5 - i sin q5[sin(e)aZ - cos(e)ay]. (4) 

By using the relations 

i X  i X  
2 2 

exp(--Or)o,exp(---o,) = cos(X)a, - sin(X)a,, 

( 5 )  exp(-iXu,) = cos(X)I - i sin(X)a,, 

the factorization form of V is obtained: 
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From this form, we construct the general unitary 
transformation formally as 

w = exp [i (i - :) U,] exp(-idFo=) 

.exp [-i (a - !) 0.1, ( 7 )  

where F is an operator of additional subsystem. The 
operator commutes with all the Pauli matrixes and 
couples with ux. We assume that it has two special 
eigenvalues among its set of eigenvalues: 

The realization of the operator F in the real physical 
system will be seen below. 

Let the subsystem represented by operator F be 
the control subsystem and another one represented 
by Pauli operators be the target subsystem. It is eas- 
ily found that the matrix U is the representation of 
unitary transformation W in the computational ba- 
sis. That is to say, the target bit undergoes a unitary 
transformation V if and only if the control bit is 1. 
Thus, the conditional quantum dynamjcs is realized 
by introducing an additional operator F .  

The unitary transformation W can be generalized 
to a more general case 

. exp [ -i (4 - 5) u.] , (9) 

where m is a positive integer and the operator Fn has 
the same property as F .  The above gate is the so- 
called (controlled)m gate which flips the target gate if 
and only if the first m bits are 1. 

Next, we proceed to the problem of how to realize 
a two-bit gate in a realistic physical system. Barenco 
et have proposed a method to construct a quan- 
tum controlled-NOT gate in cavity-QED and the field 
state is either in the Fock state 11) or the vacuum 
state I O ) .  In what follows, we will extend their meth- 
ods to realize two-bit quantum gates in which the field 
state may be in the Fock state 1 n )  (n  is a positive in- 
teger). 

Let the control qubit be the quantized field which 
may contain n photons and the target bit be the atom 
with two circular Rydberg states 1 b ) 2 ( b  E (0, l}), I 1 ) 2  

denotes the excited state and 1 0 ) ~  the ground state. 
The atom crosses through three regions sequentially: 
Ramsey zone R, cavity C, (off-resonant interaction), 
and another Ramsey zone R-'. The Ramsey zone 
consists of a classical rf field and produces 6' rota- 
tion of Block vector of an atom along y-axis in spin 
space. In cavity C, the atom interacts wibh single- 
mode quantized cavity field. Let the detuning between 

the atomic transition frequency and the cavity field 
frequency be much larger than the coupling constant, 
the effective Hamiltonian can be written as 

H = &,a+a, (10) 
where 4 = g2/A, g is the coupling constant and A is 
the detuning; a+ and a are the creation and annihila- 
tion operators of cavity field, respectively. When the 
atom passes through the three regions, the resulting 
transformation is 

w(e, 4) = exp(iOay)exp(-i4a+aaz)exp(-iOuy). 
- 

(11) 
It should be noted that the transformation ox -+ 
uy,ay -+ U,,  and U* -+ uz can be realized by the 
appropriate choice of another basis. After the trans- 
formation, Eq.( l l )  changes into 

w'p, 41 = exp(i ea,) exp(-i 4a+aux) exp(-i ea,). 

By comparing Eqs. ( 7 )  with (12), the number opera- 
tor a+a corresponds to  the operator F .  The operator 
a+a is a physical realization of formally introduced 
operator F in the cavity-QED. 

The transformation W(O,q5), Eq. (ll), can be ex- 
pressed in the following form: 

- 

(12) 

- w(e, 4) = c o s ( a + a ~ )  - i sin(a+ad)[cos(e)a, 

- sin(O)a,]. (13) 
By assuming that the cavity field is in Fock state 

1 n)1  and the atom in state 1 b ) z l  b E (0, l}, the final 
state under the transformation is 

[cos(ncj) -i(-l)b+1sin(n4)cos6'] I n ) l ) b ) 2  

When the field is in the state 1 O ) l ,  the atomic state 
does not change. When the field contains n(n  # 0) 
photons, the atom state will change to  

+i sin(n4) sin6'1n)lll - b)z.  (14) 

[cos(n4) - i (--I)~+'  sin(n4) cose]j b ) 2  

+i sin(n4) sin011 - b)2. 
Let n4 = 6 = 7r/2, we can write the transformation 
W(n/2,7r/(2n)) explicitly as 

(15) 

- 

l O ) l I O ) 2  -+ l O ) l I O ) 2 >  

l0)111)2 + I O ) l l 1 ) 2 ,  

In)1lO)2 - + i  I n ) 1 I l ) 2 ,  
( n ) l l l ) 2  -+i (n j1IOj2 .  (16) 

If we express the transformation in the compu- 

matrix form, it is just the matrix in Eq. (3). The 
quantum controlled-NOT gate is realized. Let n 4  = 
7r/4,6' = 7r/2 in Eq.(14), the unitary transformation 
can be written in the computational basis as 

/ 1 0  0 0 \ 

tational basis {l0)110)2,I0)1ll)2, !n)110)2,!n)1!1)2> in 
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We note that W2(7r /2 ,n / (4n))  = W(7r/2,7r/(2n)), 
so the gate W(7r/2,~/(4n)) can be considered as a 
square root of quantum controlled-NOT gate. It 
should be pointed out that the square root of quan- 
tum controlled-NOT gate is an important component 
for constructing three-bit Toffoli gate.5 

In summary, we have factorized the one-bit trans- 
formation matrix and constructed the general unitary 
transformation which is considered as (controlled)" 
gate for conditional quantum dynamics. By using the 
cavity-QED technique, when the cavity field contains 
either n photons or no photons, we have realized not 
only the quantum controlled-NOT gate but also the 
square root of the controlled-NOT gate. 
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