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Abstract

Taking into account the interaction of an electron with surface optical (SO) phonons, we study the ground-state energy of
the strong- and weak-coupling surface magnetopolaron in a polar crystal. The influence of the electron interaction with the
strong- and weak-coupling surface optical phonons on the properties of the surface polaron in a magnetic field is
investigated. The ground-state energy of a strong- and weak-coupling surface magnetopolaron is derived by using Tokuda
linear-combination-operator method. Numerical calculations, for the AgCl crystal, as an example, are performed and some
properties of the vibration frequency, the ground-state energy and the effective mass of the strong- and weak-coupling
surface magnetopolaron in polar crystals are discussed. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

With the development of the magneto-optical
technology, the properties of the polaron for polar
crystals in a magnetic field of arbitrary strength
have been of considerable interest [1—5]. In the
early 1960s, Larsen [6,7] investigated the energy
level of the polaron in magnetic field and the cyclo-
tron-resonance problem of the piezopolaron. Then
[8] he studied the cyclotron resonance of a two-
dimensional (2D) polaron using the Rayleigh—
Schrodinger perturbation theory (RSPT). Later [9]

*Corresponding author.

he proposed a novel fourth-order perturbation
method to investigate the properties of 2D mag-
netopolarons. Wu et al. [10] calculated the
ground-state energy of a Fröhlich optical polaron
confined to two dimensions, placed in a perpen-
dicular magnetic field by using the Feynman path-
integral approach. The Feynman-model mass, the
magnetization and the susceptibility are cal-
culated as a function of the magnetic field strength
for different values of the electron—phonon coup-
ling. Subsequently, they [11] calculated the two-
dimensional polaron cyclotron mass, which goes
beyond the second-order perturbation theory. The
present approach is based on a memory-function
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formalism and does not rely on a calculation of the
Landau level. Kong et al. [12] have generalized
Larsen perturbation method to treat the mag-
netopolaron in a semiconductor quantum well.
Later, Osorio et al. [13] reported for the first time
a theoretical calculation for the resonant donor
impurity magnetopolaron in GaAs—Ga

1~x
Al

x
As

quantum well structures. Employing Haga’s per-
turbation method, Hu Ze et al. [14] derived an
effective Hamiltonian for the interface mag-
netopolaron in polar crystals at zero temperature,
in which the interactions of both bulk longitudinal
optical (LO) phonons and interface (IF) phonons
have been taken into account. Wei et al. [15,16]
studied the induced potential and the self-energy of
an interface magnetopolaron interacting with bulk
longitudinal optical (BO) phonons as well inter-
face-optical (IO) phonons using the Green-function
method.

Huybrechts [17] proposed a linear-combination
operator method, by which a strong-coupling po-
laron was investigated. Later, many workers
[18,19] studied the strong-coupling polaron in
many aspects by this method. On the basis of
Huybrechts’ work, Tokuda [20] added another
variational parameter to the momentum operator
and also evaluated the ground-state energy and
effective mass of the bulk polaron. The ground-
state energy and the cyclotron resonance frequency
of the surface polaron in a magnetic field has been
calculated by many methods. Many of them mainly
concentrated their attention on the weak- and in-
termediate-coupling cases. However, the strong-
coupling surface magnetopolaron in polar crystals
has not been studied by using a linear combination
operator method so far.

For the bulk polaron, the weak- and intermedi-
ate-coupling theories are applicable for the elec-
tron—bulk-LO—phonon coupling constant a(6
[21], whereas for the surface polaron this confine-
ment is about 2.5 [22,23]. Hence, when the elec-
tron—SO—phonon coupling constant satisfied
a
S
'2.5, the strong-coupling theory must be ap-

plied.
In this paper, we apply the Tokuda’ linear-com-

bination operator method to study the influence
of surface optical phonons on the properties of a
strong- and weak-coupling surface magnetopola-

ron in polar crystals. The expression for the
ground-state energy, cyclotron-resonance fre-
quency and the effective mass of the surface polar-
on as a function of the magnetic field strength is
obtained. Numerical calculations, taking a AgCl
crystal as an example, are performed and properties
of these quantities for the strong- and weak-coup-
ling surface magnetopolaron in polar crystals are
discussed.

2. Hamiltonian

The surface between a AgCl crystal and vacuum
is perpendicular to the z-axis; the semiinfinite space
z'0 is occupied by the AgCl crystal, whereas the
space z(0 is a vacuum. A slow electron is placed
inside the AgCl crystal at a distance z ('0) from the
surface. Assume that an external magnetic field
B"(0, 0, B) (applied normal to the surfaces) exists
and is described by a vector potential in the Land-
au gauge A"B(!y/2, 0, 0). Theoretical results
[24] show that the surface layer of crystals may be
regarded as pure 2D crystals if the distance from
the surface is smaller than the radius of polarons.
The effect of bulk phonons can be neglected, while
the surface optical phonons are taken into account
in the surface layer. The Hamiltonian of the elec-
tron—surface optical phonon system can be written
as
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where P"(P
x
, P

y
) and q"(x, y) are momentum

and the position vector, respectively, of an electron
in a plane parallel to the surface. aq̀ and aq are the
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creation and annihilation operators, respectively, of
the surface optical phonon with a two-dimensional
wave vector q, ul, uS

and u
T

are the frequencies of
the bulk LO, SO and bulk transverse optical
phonons, S is the surface area of the AgCl crystal,
and e

0
(e
=
) is the state (high-frequency) dielectric

constant.
Following Tokuda [20] we also introduce the

linear combination of the creation and annihilation
operators b`

j
and b

j
to represent the momentum

and position of the surface electron

P
j
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m+j
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1@2
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where the suffix j refers to the x- and y-directions,
j and P

0
are a variational parameter, and b`

j
and

b
j

are Bose operators satisfying the Bose com-
mutative relation. Substituting Eq. (2) into Eq. (1a)
and carrying out the unitary transformation

H"º~1
2

º~1
1

Hº
1
º

2
, (3)

where
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"expA!iA+

q
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"expA+q (aq̀ f
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!aq f*

q B. (4b)

Here f
q
and f*

q
are variational parameters, and A is

a parameter characterizing the coupling strength
proposed by Huybrechts. In the unitary trans-
formation º

1
, A"1 corresponds to the weak-

coupling limit and A"0 corresponds to the
strong-coupling limit. The ground-state wave func-
tion of the system is /"u(o)D0T where u(o) is the
normalized surface magnetopolaron wave function.
D0T is the zero phonon state, which satisfies

aqD0T"b
j
D0T"0. (5)

Applying the transformations (4a) and (4b) to
Hamiltonian (1a) and using the operator expres-
sions (2a) and (2b), we can easily obtain the

ground-state energy,
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The total momentum of the system can be written
as

P
T
"P#+

q

+qaq̀ aq . (7)

Applying the unitary transformations (4a) and (4b)
to the above expression and also using the mo-
mentum operator expression (2a), we obtain

P
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The minimization problem is now carried out by
the use of Lagrange’s multiplier u,

F(j, P
0
, u, f

q
)"H

0
!uP

0
. (9)

F(j, P
0
, u, f

q
) may be called the variational para-

meter function. Minimizing Eq. (9) with respect to
j, P

0
, u, f

q
, we can determine these parameters and

function. Then, inserting them into the expressions
of H

0
and P, we can further evaluate the expecta-

tion value of H
0

and P for the ground state /.

3. Weak- and strong-coupling limits

3.1. Weak coupling

In the unitary transformation, º
1

with A"1
corresponds to the weak-coupling limit. Re-
placing +

q
by (S/4n)2 :=

0
:2n
0

q dq du, although the
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calculation is straightforward, Eq. (9) can be writ-
ten as
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Performing the variation in Eq. (10) with respect to
j, we get
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Inserting these parameters and functions into
Eq. (8), we get the expectation value of the mo-
mentum for the ground state to be

P"mu/A1!
p

8
a
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It is evident from the structure of this expression
that u has the meaning of the velocity which may be
regarded as the average velocity of the surface mag-
netopolaron, and the factor before u,

m*"
m

1!1
8
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, (12b)

can be interpreted as the effective mass of the sur-
face polaron in a magnetic field. Finally, ground-
state energy can be expressed as

E
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In Eq. (13), the first term is the kinetic energy of the
surface magnetopolaron, the second term repres-
ents Landau ground-state energy of the surface
polaron in a magnetic field and the third term is the
self-trapping energy.

3.2. Strong coupling

In the unitary transformation, º
1

with A"0
corresponds to the strong-coupling limit. Eq. (9)
can be written as
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Performing the variation in Eq. (14) with respect to
j, we obtain
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Inserting these parameters and functions into
Eq. (8), we get the expectation value of the mo-
mentum for the ground state to be
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is the effective mass of the strong-coupling surface
polaron in a magnetic field. Finally, the ground-
state energy of the strong coupling surface mag-
netopolaron can be expressed as
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In order to find the effective mass, the cyclotron
resonance frequency and the ground-state energy of
the strong-coupling surface magnetopolaron, we
shall discuss the following two limiting cases.

3.2.1. Strong magnetic field
Under the strong magnetic field condition [9],

u
C
Au

S
, Eq. (15a) can be written as
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Substituting Eq. (18) into Eqs. (16b) and (17), we
have
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Eq. (19a) shows that for strong magnetic field
the effective mass of the strong-coupling surface
magnetopolaron is higher than the band mass. The
first term in Eq. (19b) is the kinetic energy of the
strong-coupling surface magnetopolaron, the sec-
ond term is Landau ground state energy of the
strong-coupling surface magnetopolaron, and the
third term is the self-trapping energy.

3.2.2. Weak magnetic field
In the case of u

C
@u

S
, Eq. (15a) can be written as
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Substituting Eq. (20b) into Eqs. (16b) and (17), we
have
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From Eq. (21a), one can see that for the strong-
coupling surface magnetopolaron in polar crystals,
the increasing part of the effective mass is propor-
tional to a4

S
because of the strong coupling between

the electron and surface optical phonon. In
Eq. (21b), the first term is the kinetic energy of the
strong coupling surface polaron in a weak magnetic
field, the second term being proportional to the
squared coupling constant a2

S
is the coupling energy

between the electron and the surface optical
phonon, and the third term represents the coupling
energy between the electron, the surface optical
phonon and the magnetic field.

4. Results and discussion

The effective mass m* and the ground-state en-
ergy E

0
of the weak-coupling surface magneto-

polaron in polar crystals are given by Eqs. (12b)
and (13). Eq. (12b) indicates that the effective mass

is independent of magnetic field. Further it also
indicates that there is only a magnetic field depend-
ence of the Landau ground-state energy in Eq. (13),
whereas the first and the third terms in Eq. (13) are
independent of magnetic field because of the weak
coupling between the electron and the surface op-
tical phonon. From Eq. (12b) we also see that for
weak electron—SO—phonon coupling when the elec-
tron—SO—phonon coupling constant takes very
small values, Eq. (12b) can be expressed as

m*

m
"1#

p

8
a
S
#

p2

64
a2
S

. (22)

This result is in agreement with the Feynman mass
result and the Peeters mass result [11] at zero
magnetic field.

To show more obviously the influence of the
magnetic field on the properties of the strong-coup-
ling surface polaron we perform a numerical evalu-
ation by taking the polaron in the surface of a AgCl
crystal as an example. In Table 1, the data for
a AgCl crystal are given.

In the strong-magnetic-field case, the effective
mass m* and the ground-state energy E

0
of strong-

coupling surface magnetopolaron are given by Eqs.
(19a) and (19b). In order to express more clearly the
influence of cyclotron frequency u

C
on the effective

mass m* of the surface magnetopolaron, numerical
calculations for a AgCl crystal are performed and
the results are given in Table 2. From Table 2, we
can see that the effective mass of strong-coupling
surface magnetopolaron in a AgCl crystal for the
strong-magnetic-field case will increase with in-
creasing cyclotron frequency; this result is in agree-
ment with mass of Feynman polaron model of Ref.
[10]. In Eq. (19b), note that the electron—phonon
correction to the ground-state energy is propor-
tional to a

S
Ju

C
u

S
, which is in agreement with the

result of Wu et al. (see Eq. (14) in Ref. [10]).

Table 1
The data for an AgCl crystal. All the parameters are taken from
Ref. [25]

Material e
0

e
=

+u
S
(meV) a

S

AgCl 9.50 3.97 21.6 2.89
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Table 2
Surface magnetopolaron effective mass for different values of the cyclotron frequency in an AgCl crystal

u
C
/u

S
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

m*/m 1.16 1.45 1.83 2.28 2.79 3.35 3.96 4.62 5.32 6.06 6.83 7.65

In the weak-magnetic-field case, the effective
mass m* and the ground-state energy E

0
of strong-

coupling surface magnetopolaron are expressed by
Eqs. (21a) and (21b). Eq. (21a) indicates that the
effective mass is independent of magnetic field,
whereas it will increase with increasing a

S
. In Eq.

(21b), the term 1
8
pa2

S
+u

S
is the ground-state energy

of surface magnetopolaron in strong-coupling limit
for u

C
@u

S
except the first term in Eq. (21b); this

result is smaller than the result of Wu et al. (see Eq.
(15) in Ref. [10]).

Eq. (15) represents the vibration frequency of the
strong-coupling surface magnetopolaron in polar
crystals. From Eq. (15), one can see that the vibra-
tion frequency j depends not only on the elec-
tron—SO—phonon coupling constant a

S
and surface

optical phonon frequency u
S
but also on the mag-

netic field B (or the cyclotron frequency for a rigid-
lattice band mass u

C
). Fig. 1 shows the variation in

the vibration frequency j of the strong-coupling
surface magnetopolaron in a AgCl crystal with the
magnetic field B. From the figure, one can see that
the vibration frequency j will increase with increas-

Fig. 1. The relation between j and B in an AgCl crystal.

ing in the magnetic field B. The vibration frequency
j as a function of u

C
for a AgCl crystal is shown in

Fig. 2. From Fig. 2, we can see that the vibration
frequency j will increase with increasing in the
cyclotron frequency u

C
. One can also see that when

u
C
"u

S
"0.327]1014 s~1, j"2.169]1014 s~1,

and when u
C
"11.661 u

S
, j"u

C
"3.813]

1014 s~1.
Eq. (16b) shows the effective mass of the strong-

coupling surface magnetopolaron in polar crys-
tals. From Eq. (16b), one can see that the effective

Fig. 2. The relation between j and u
C

in an AgCl crystal.
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Fig. 3. The relation between m*/m and B in an AgCl crystal.

mass m* depends not only on the electron—SO—
phonon coupling constant a

S
and surface optical

phonon frequency u
S
but also on the magnetic field

B. The dependence of the effective mass m*/m of the
strong-coupling surface magnetopolaron for
a AgCl crystal on the magnetic field B is plotted in
Fig. 3. From Fig. 3, we also see that the effective
mass m*/m increases with increase in magnetic field
B. The effective mass m*/m is almost linearly depen-
dent on the magnetic field strength B. This result is
in agreement with Larsen theoretical curve in
a AgCl crystal [26]. Fig. 4 shows the relationship
between the effective mass m*/m of the surface
magnetopolaron in a AgCl crystal and the cyclo-
tron frequency u

C
. Note that the effective mass

m*/m increases with increase in u
C
; this result is in

agreement with the mass of Feynman polaron
model (see Table 1 in Ref. [10] for a"4).

Eq. (17) represents the ground-state energy of the
strong-coupling surface magnetopolaron in polar
crystals. It can be expressed as

E
0
"1

2
m*u2#E

53
, (23a)

where

E
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+u2
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#

Jn
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S
+u

S A
j
u

S
B
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(23b)

Fig. 4. The relation between m*/m and u
C

in an AgCl
crystal.

is the self-trapping energy of the strong-coupling
surface magnetopolaron. From Eq. (23b), one can
see that the self-trapping energy E

53
of the strong-

coupling surface magnetopolaron depends not only
on the vibration frequency j, the electron—
SO—phonon coupling constant a

S
and surface op-

tical phonon frequency u
S
but also on the magnetic

field B. Fig. 5 shows the relationship between the
self-trapping energy E

53
of the strong-coupling sur-

face magnetopolaron in a AgCl crystal and the
magnetic field B. It can be noted from the figure
that the self-trapping energy E

53
will decrease with

increasing magnetic field B. The dependence of the
self-trapping energy E

53
of the surface mag-

netopolaron in a AgCl crystal on the cyclotron
frequency u

C
is plotted in Fig. 6. Fig. 6 shows that

the self-trapping energy E
53

will decrease with
increasing cyclotron frequency u

C
. In Eq. (15a),

taking j"2]1014 s~1 and u
S
"0.9]1014 s~1 as

examples, we perform a numerical calculation,
and Fig. 7 shows the variation in the cyclotron
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Fig. 5. The relation between E
53

and B in an AgCl crystal.

Fig. 6. The relation between E
53

and u
C

in an AgCl crystal.

frequency u
C

of the surface magnetopolaron in
polar crystals with the electron—SO—phonon coup-
ling constant a

S
. From the figure we see that u

C
de-

creases with increase in the a
S
.

Fig. 7. Variation of u
C

with a
S

in polar crystals.
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