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Abstract

In order to solve the surface-shadowing problems that take place in the scattering of electromagnetic waves from rough
or period surfaces, an equivalent field principle for plane waves scattering from plane surfaces is given in this paper.
Supported by this principle, the reciprocity theorem, and the boundary conditions that relate the scattering field to the
incident field through the Fresnel coefficient, a multiple Kirchhoff integral method for metal blazed gratings is developed.
Under the conditions of Littrow mounting or fixed angular deviation mounting, illuminated by plane waves, the y1 order’s
andror the total efficiencies of perfectly conducting or UV aluminum blazed gratings are calculated and the stability and the

Žself-consistency of this method are discussed. Under near-Littrow mounting the fixed angular deviation mounting but where
.the angular deviation is very small conditions, the calculations are compared with the experimental results. q 1999
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1. Introduction

The anomalous behavior of diffraction gratings,
w xwhich was first observed by Wood 1 , has attracted

a large number of theoretical and experimental re-
searchers. Recently, more and more analysis of vari-
ous diffraction gratings working in the UV, VUV or

w xX-ray region has been reported 2–4 . However,
most of this work is theoretically based on the
mode-couple method, the integral method or the
differential method explicated systematically by Petit
w x5 .

) Corresponding author.

w xPalmer and LeBrun 8 studied the efficiency
problem and the anomalous behavior of perfectly
conducting blazed gratings with the multiple Kirch-
hoff integral method first, since the early works of

w x w xMcPhedran 6 and Huntley 7 demonstrated that the
single scalar Kirchhoff integral method was not
self-consistent and could not explain the anomalies
of gratings. The superior of the multiple Kirchhoff
integral method is that we can avoid the problem of
determining the accurate current distribution on the
grating surface by following a suggestion by Stone
w x9 . However, they did not give more details such as
the stability and the self-consistency of the method,
perhaps because the calculation time of those prob-
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lems was too large for even the best computers at
that time.

Today, fortunately, utilizing a general Pentium II
PC of processor frequency 350 MHz, in this paper
we could develop the multiple Kirchhoff integral
method in the following respects:

Firstly, to extend the method to real metal grat-
w xings, Jackson’s boundary conditions 10,11 , which

define the actual scattered or diffracted fields on the
boundary to be the ‘total field minus the incident
field’, are introduced.

Secondly, to solve the shadowing problems not
solved by Palmer and LeBrun while dealing with
blazed gratings, an equivalent field principle is given.

Thirdly, the stability and self-consistency of this
developed multiple Kirchhoff integral method are
discussed by means of the total efficiency calcula-
tions of perfectly conducting blazed gratings.

Fourthly, under the conditions of Littrow mount-
ing or fixed angular deviation mounting, the y1
order’s efficiencies of UV aluminum blazed gratings

Žwhile incident waves are both S polarized the mag-
.netic field is parallel to the grooves and P polarized

Ž .the electric field is parallel to the grooves are
calculated.

And lastly, to examine the reliability of the devel-
oped multiple Kirchhoff integral method, while the
UV aluminum blazed gratings are shined by the
unpolarized plane electromagnetic waves and under
near Littrow mounting conditions, the calculated y1
order’s efficiencies are compared with the experi-

w xmental results 12 .

2. Multiple Kirchhoff integral method

2.1. Basic theory

In our theory, the incident electromagnetic wave
excites all of the spots on the facets of the blazed
grating to be the second sources, and all of the
second sources in one facet emit spherical waves to
all of the spots in space or on the opposite facet. The
amplitudes and the phases of the scattered waves are
determined by the amplitudes and the phases of the
incident waves, from the actual scattered fields
boundary conditions that are approximated and de-

fined by Jackson to be ‘total field minus the incident
field’. Also, the complex amplitudes of arbitrary
spots in space are the vector sum of the scattered
waves from all of the second sources. Such a method,
taking into account only the effect of second sources
or the first scattering, is the single Kirchhoff integral
method.

However, the single Kirchhoff integral method
cannot demonstrate the anomalous behavior of

w xdiffraction gratings 6 , simply because of the neglect
of the multiple scattering phenomena. In our theory,
the vector sum of the scattered waves from second
sources may excite the spots on the opposite facets
of the blazed grating to be the third sources, and the
third sources may excite the fourth sources, and so
on. The complex amplitude of one spot in space is
the vector sum of the waves from all of the sources,
in all facets, and at all times. The theoretical analysis
and the simulated calculation of Palmer and LeBrun
w x8 demonstrated that, without shadowing problem,
the sum of the first three-times scattering may de-
scribe the anomalous behavior of the gratings and
retain sufficient precision.

2.2. Boundary conditions

From wave optics, the scattering boundary condi-
tions for random roughness surfaces may be used as
the diffracting boundary conditions for period grat-
ings. Also, the vector boundary conditions that relate
the scattering fields to the incident fields have been

w x w xgiven by Jackson 11 and Holzer and Sung 10 :

™ ™ ™ ™ ™ ™™s s s s p pE syn =g B , B sg B , E sg E ,s r s in s s in s p in

™ ™™p pB sn =g E , 1Ž .s r p in

™ ™ ™X ™ ™ ™XŽ .n sn y2n nPn and n is the perpendicular ofr 0 0

the grating facet, g , g , are the Fresnel reflections p

factor of S and P polarization and defined as:

tan u yu sin u yuŽ . Ž .i r i r
g s g sy , 2Ž .s ptan u qu sin u quŽ . Ž .i r i r

u is the incident angle, u is the refraction angle,i r

they are related by n sinu ssinu , and n snˆ ˆ12 r i 12 12

q ik is the complex refracting power of the grat-12

ing material.
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Fig. 1. Blazed grating groove geometry with ray incident from P0

and diffracted to P.

2.3. EquiÕalent field principle

One groove of a blazed grating is shown in Fig. 1.
The wideness of the groove is d, the antiblaze
surface L makes angle b with the grating surface,1

and the blaze surface L makes angle a with the2
™ ™grating surface. The normal of L or L is n or n ,1 2 1 2

and the direction of incident or diffracted plane wave
is P or P.0

The diffracting situations of blazed gratings dis-
w xcussed and calculated by Palmer and LeBrun 8 are

only restricted to the condition of aypr2-u andi

u -pr2yb , i.e., the angles for which both sourcer

and detector can see all parts of the grating facet and
there are no shadows involved.

In fact, all the diffracted gratings may be incident
and diffracted in the angular range of ypr2-u i

and u -pr2. Thus, we cannot completely get anyr

one efficiency curve of arbitrary order which satis-
fies the equation of blazed gratings:

l
sinu sysinu ym , 3Ž .r i d

not to say getting the total efficiency curve of an
arbitrary blazed grating with any incident angle. If
we want to discuss the self- consistency of this
multiple Kirchhoff integral method, what we must do
first is solve the shadowing problem in the course of
diffraction. For this purpose, an equivalent field
principle is described as follows.

Because the transverse dimensions of the facets of
the gratings are comparable with the wavelength of
the incident waves, while the gratings irradiated by
plane electromagnetic waves and detected in the far
field conditions, an equivalent field principle may be
utilized to solve the shadowing problem:

As shown in Fig. 2, in vacuum, the complex
amplitude of a free plane electromagnetic wave Es

Ž Ž ..A exp i k Pxqk Py on the plane yy lxqcs0x y

is equal to the complex amplitude of the plane
Ž Ž ..electromagnetic wave E sA exp i k Pxqk Py1 1 x 1 y

in this plane and

2 2 2 2ksk , ks k qk , k s k qk , 4Ž .( (1 x y 1 1 x 1 yž /
usu . 5Ž .1

When a plane electromagnetic wave propagates
freely in vacuum and does not encounter any mate-

Fig. 2. The plane wave field E and its equivalent field E on the plane yy lxqcs0.1
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rial, there is no electromagnetic field scatted, and the
scattered field may be defined as:

E sEyE sEq yE , 6Ž . Ž .s 1 1

and its value is 0. We define yE as E , the1 e

equivalent field of the incident plane wave field.
When a plane electromagnetic wave is scattered

by an ideal conductor surface, the equivalent field
Ž .defined as Eq. 6 is also equal to 0, only because it

is inside the conductor. If the polarization of incident
Ž .wave is taken into account, Eq. 6 may be rewritten

as:

E s" EqE . 6XŽ . Ž .s e

Under S polarization the positive sign is taken,
and under P polarization the negative sign is taken.

When a plane electromagnetic wave is scattered
by a real conductor or a non-transparent dielectric
surface, if the transmission wave may be neglected,
then the equivalent field is also 0. Thus, we may

w xextend Jackson’s vector boundary conditions 10,11 ,
which define the actual scattered field to be the ‘total
field minus the incident field’, and relate the scat-
tered field to the incident field through the Fresnel
coefficient, to be

™ ™ ™™s s sE syn = g B qB ,ž /s r s in e ,in

™ ™ ™ ™ ™ ™s s s p p pB sg B qB , E sg E qE ,ž / ž /s s in e ,in s p in e ,in

™ ™ ™™p p pB sn = g E qE . 7Ž .ž /s r p in e ,in

Because, in our discussion, the incident and the
diffracted electromagnetic waves are all plane waves,

we can estimate whether the incident field andror
the diffracted field exist by the geometrical optics
criterion. An equivalent field principle for the substi-
tution of plane wave field may be described as
follows:

Ž .1 When the incident field is projected onto a
scattering facet without any shielding effect, the
equivalent field is symmetrically distributed to the
incident field about the scattering facet, so that the
equivalent field is shielded to be 0 by the scattering
body.

Ž .2 When the incident angle, which is decided by
the vector of incident field and the perpendicular of
the facet, is larger than pr2, the incident field is
shielded to be 0 by the scattering body, but the
equivalent field exists. Thus, the effect of the inci-
dent field on the scattering facet may be substituted
by the effect of its equivalent field.

Ž .3 When the incident field is shielded by other
conductor or non-transparent object, but not by the
scattering facet itself, the incident field and its equiv-
alent field are all equal to 0.

Supported by the equivalent field principle above,
the reciprocity and the energy conservation principle,
the developed multiple Kirchhoff integral method for
blazed gratings can be discussed below.

2.4. Multiple Kirchhoff integral formulae

As shown in Fig. 3, taking account of the length
of this paper and continuity of Palmer and LeBrun’s

w xwork 8 , in the following, involving the shadowing
effect, we simply write out the complex amplitudes

ŽFig. 3. Various multiple diffraction terms from the grating grooves. Incident field U on L at right gives rise to U , U and U single,0 1 1 3 5
.double, and triple diffractions . Incident field U on L at right gives rise to U , U and U .0 2 2 4 6
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of the first three-times diffracted rays from the multi-
ple Kirchhoff integral method.

The complex amplitude of a single diffraction on
the antiblaze surface, L , divided by the incident1

complex amplitude, is

j1 w xU sK g bqu exp ikj A cos bquŽ . Ž .H1 1 a i i
j0

qcos bqu c u c u dj , 8Ž . Ž . Ž . Ž .r i r

where

A'sin bqu qsin bqu . 9Ž . Ž . Ž .i r

To solve the shadowing problem and from the equiv-
alent field principle which has been discussed in Eqs.
Ž . Ž .8 and 9 ,

p
if u ) yb , then let u spy2byui i i2

and c u sy1,Ž .i
p

and if u ) yb , then let u spy2byur r r2

and c u sy1,Ž .r

otherwise let c u s1 and c u s1;Ž . Ž .i r

p
if usMin u ,u Fay ,Ž .i r 2

then let j sh sin ayuypr2Ž .0 1

rsin bquqpr2 ,Ž .
otherwise let j s0.0

Similarly, the complex amplitude of the ray which is
incident on the antiblaze surface L scattered to the1

blaze surface L and then diffracted out is2

h12U s ik d K r4 g / n ,t I cos ayuŽ . Ž .Ž .H3 1 a 2 A r
h0

qi I exp ikhsin ayu c u c u dh ,Ž . Ž . Ž .B r i r

10Ž .

where

j1
I sg bqu H kt cos n ,t q i H ktŽ . Ž . Ž . Ž .HA a i 1 1 0

j0

=cos bqu exp ikj sin bqu dj ,Ž . Ž .i i

11Ž .

j1
I sg bqu F kt cos n ,t cos n ,tŽ . Ž . Ž . Ž .HB a i 1 2

j0

qi H kt cos n ,t cos bquŽ . Ž . Ž .1 2 i

=exp ikj sin bqu dj , 12Ž . Ž .i

and

1
F x ' H x yH x . 13Ž . Ž . Ž . Ž .2 02

Ž . Ž .In Eqs. 10 – 13 ,
p

if u ) yb , then let u spy2byui i i2

and c u sy1,Ž .i
p

and if u -ay , then let u s2aypyur r r2

and c u sy1,Ž .r

otherwise let c u s1 and c u s1;Ž . Ž .i r

p
if u -ay ,i 2

then let j sh sin ayu ypr2Ž .0 1 i

rsin bqu qpr2 ,Ž .i

p
and if u ) yb ,r 2

then let h sj sin bqu ypr2Ž .0 1 r

rsin aqpr2yu ,Ž .r

else let j s0 and h s0;0 0

z13U s k d K r16 g / n ,Õ I cos bquŽ . Ž .Ž .H5 1 a 1 C r
z0

qi I exp ikj sin bqu c u c u dz ,Ž . Ž . Ž .D r i r

14Ž .

where

h1

I s g / n ,t I H kÕ cos n ,ÕŽ . Ž . Ž .HC a 2 A 1 2
0

qI H kÕ dh , 15Ž . Ž .B 0

and

h1

I s g / n ,t I F kÕ cos n ,Õ cos n ,ÕŽ . Ž . Ž . Ž .HD a 2 A 2 1
0

qI H kÕ cos n ,Õ dh , 16Ž . Ž . Ž .B 1 1
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Ž . Ž .In Eqs. 15 and 16 and in the interrelated Eqs.
Ž . Ž .11 and 12 ,

p
if u ) yb , then let u spy2byui i i2

and c u sy1,Ž .i
p

and if u ) yb , then let u spy2byur r r2

and c u sy1,Ž .r

otherwise let c u s1 and c u s1;Ž . Ž .i r

p
if u -ay ,i 2

then let j sh sin ayu ypr2Ž .0 1 i

rsin bqu qpr2 ,Ž .i

p
and if u -ay ,r 2

then let z sh sin ayu ypr2Ž .0 1 r

rsin bqu qpr2 ,Ž .r

otherwise let j s0 and z s0.0 0

Ž . Ž . Ž Ž .. Ž .In Eqs. 8 – 16 , K s cos bqu r 2 dcosu1 i i
Ž .and g u is the Fresnel amplitude reflectivity of thea

grating surface material when it is illuminated by the
Ž .ray with a polarization and u incident angle. H x ,0

Ž . Ž .H x , H x are the Hankel functions, defined as1 2
Ž . Ž . Ž .H x sJ x y jY x , and t or Õ is the distancen n n

between two scattering points which are on the
opposite facets of the same groove. From these

w xformulae and the reciprocity, we get U , U , U 9 .2 4 6

3. Calculation and discussion

With the equations given in Section 2.4, the sta-
bility and the self-consistency of the multiple Kirch-
hoff integral method are to be examined in Figs.
4–6.

Fig. 4 shows the stability of this method with
calculation to the y1 order efficiency of a perfectly

Ž .conducting blazed grating as68 and gs908 , from
the absolute value of U , U and U change by the2 4 6

number of intervals by which the grating facet is
divided equally. The grating is mounted as a Littrow
configuration. The incident and the diffracted angle
are all 108. The grating is incident by the P polariza-

Fig. 4. The stability of multiple Kirchhoff integral algorithm. The
absolute values of U , U , and U change to the number of2 4 6

intervals in the course of every integral.

Žtion plane electromagnetic wave the direction of the
.electric vector is parallel to the rulings .

From the curves in Fig. 4, we may find that the
Ž .absolute values of the complex amplitudes U , U2 4

and U converge if the number of intervals increases.6

Also, from these curves we can easily understand
that U goes to the stable point more slowly than U ,6 4

and U does so more slowly than U only because of4 2

the effect of multiple integral. What our simulated
calculation demonstrates is that the means of chang-
ing the number of intervals involves a great deal of
time to get a sufficiently stable complex amplitude
of U and U . In addition, this method will produce5 6

increasingly higher accumulative errors when the
number of intervals increases in an unrestrained
manner because of the complexity of the method.
Usually, the absolute ratio of U to U or U to U is6 4 4 2

much smaller than 1, so we can reduce the precision
requirement of triple andror double diffracted terms
properly in the real course of calculating the efficien-
cies of diffracted orders. We can take advantage of
the self-consistency of the method shown in Fig. 5
and Fig. 6 to analyze and estimate the calculations of
the grating efficiency.

The self-consistency of one grating theory comes
from the energy conversation law and means that the
total efficiency of any perfectly conducting grating
should be 1.

From our simulated calculations, we found that
deciding how to choose the number of intervals in
the course of once integral is the key problem which
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Fig. 5. The total efficiency curves of unpolarized light for a 48

blaze angle echelette grating and y1 Littrow mounting in the case
of infinite conductivity.

affects the precision and efficiency of the calcula-
tions. If we want to finish the whole calculation of
any one order’s efficiency curve or the total effi-
ciency curve, we must deal with a very wide wave-
length range. For example, under y1 order Littrow
mounting conditions, the grating equation can be

Ž .written as u su sarcsin lr2 d . Thus, from thei r
Ž .optical sampling theorem OST , we know that the

length of one interval, in principle, should be less
than lr10 or lr5, if what you care about is only
the calculating precision. However, only from the
OST, just with a present PC, we could not deal with
the situation of lr2 d™0 only because the calculat-

Žing quantity is too large for instance, if we handle a
grating with a 28 blazed angular, and when u su si r

0.28, then the number of intervals on the blazed facet
should be 1431, and the calculation of U or U is a5 6

.triplex integral . However, when u su ™908 ori r

lr2 d™1, the number of intervals which is decided

Fig. 6. The total efficiency curves of unpolarized light for a 138

blaze angle echelette grating, perfectly conducting, used with 458

between incident and y1 order diffracted beams.

Fig. 7. The y1 order efficiency curves for a 16.748 blaze angle,
2400 groovermm UV aluminum blazed grating, used in Littrow
mount.

from OST and is equal to lr10 turns out to be 5,
and this situation cannot give any promise for the
precision of the integral calculations.

Thus, in the following calculations, excluding the
limit situation of lrd™0, the number of intervals
in once integral is taken to be fixed.

The total efficiency curves of perfectly conduct-
ing blazed gratings calculated with 40 intervals in
each diffraction course are shown in Figs. 5 and 6.

In Fig. 5, the blazed angle of the grating is 48 and
the grating is mounted with y1 order Littrow con-
figuration. In Fig. 6, the blazed angle of the grating
is 138 and the grating is mounted with y1 order
fixed angular deviation. Both the grating in Fig. 5
and that in Fig. 6 are incident by unpolarized plane
wave and both P and S polarization effects are taken
into account together during the calculations. The
total efficiency curves of the gratings shown in these
figures depart from 1, because of the rounding-off
error and accumulative error produced in the course
of calculation, and because of the truncation error

Fig. 8. The y1 order efficiency curves for a 8.288 blaze angle,
1200 groovesrmm UV aluminum blazed grating, used with 458

fixed angular deviation between incident and diffracted beams.
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Fig. 9. The y1 order efficiency for a 0.24 mm blaze wavelength,
2400 groovesrmm UV aluminum blazed grating, used in near

ŽLittrow mount 108 between incident and y1 order diffract
.beam , while incident plane electromagnetic waves are unpolar-

ized. The solid curve is from the calculation, and the dot is from
the experiment.

produced from the neglecting of four-fold and more
Ž .than four-fold diffractions i.e. U , U . . . .7 8

However, from the calculations we have com-
pleted, we know that it is easy to control the total
error of the total efficiency in the range of about
10% by choosing the number of the intervals to be in
the range of 40–80 in the course of the calculation of
once diffraction.

Since the self-consistency of the multiple integral
method has been examined in Figs. 5 and 6, we can
easily calculate the efficiencies of the real metal
blazed gratings which work in the UV band where
the optical index of the grating surface materials,
which depend on the wavelength, must be taken into

w xaccount 13 . For instance, the y1 order efficiency
curves of aluminum blazed gratings of different pa-
rameters and which are used in different mounting
model are given in Figs. 7 and 8.

In order to examine the reliability of the calcula-
tions of the multiple Kirchhoff integral method, in

Fig. 10. As for Fig. 9 except blazed wavelength is 0.25 mm.

Fig. 11. As for Fig. 9 except blazed wavelength is 0.15 mm.

Figs. 9–12, the calculated y1 order’s efficiencies of
UV aluminum blazed gratings, while they are under
near Littrow mounting conditions and the incident
plane electromagnetic waves are unpolarized, are
compared with the experimental result finished by

w xShuhong 12 in our laboratory two years ago.
From these comparisons of simulated calculations

and the experimental results, we believe that the
developed multiple Kirchhoff integral method is suit-
able for solving the efficiency problems and the
anomalous behaviors of UV metal blazed gratings,
since the calculated and the experimental data in
Figs. 9–11 are almost coincident.

However, the experimental data in Fig. 12 do not
show the anomalous behaviors which are found in
the calculations. From analysis, we know that except
for the calculating precision, the main reason of
disagreement between the calculated and the experi-
mental results is that the incident plane electromag-
netic waves in the calculations are unpolarized. In
contrast, the monochromatic incident waves in the
experiment are obtained from the diffract grating

Fig. 12. As for Fig. 9 except blazed wavelength is 0.15 mm and
groove number is 1200rmm.
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inside the Seya-Namioka monochromator and are
incompletely depolarized. Also, from Figs. 7 and 8,
we know that the polarizations of the incident waves
may have a great effect on the distribution of the
efficiencies to the incident wavelengths.

References

w x Ž . Ž .1 R.W. Wood, Proc. Phys. Soc. London 18 1902 396.
w x Ž . Ž .2 M.P. Kowalski, J.F. Seely, et al., Appl. Opt. 36 34 1997

8939–8943.
w x Ž .3 L.I. Goray, Proc. SPIE 2278 1994 168–172.
w x Ž .4 L.I. Goray, B.C. Chernov, Proc. SPIE 2515 1995 240–245.
w x5 R. Petit, Electromagnetic Theory of Gratings, Springer-

Verlag, Berlin, 1980.

w x6 R.C. McPhedran, Ph.D. Thesis, University of Tasmania,
1973.

w x7 M.C. Huntley, Diffraction Gratings, Techniques of Physics,
Academic Press, London, 1982, p. 181.

w x Ž . Ž .8 C.H. Palmer, H.W. LeBrun, Appl. Opt. 11 4 1972 907–
913.

w x9 J.M. Stone, Radiation and Optics, McGraw-Hill, New York,
1963, p. 167.

w x Ž . Ž .10 J.A. Holzer, C.C. Sung, J. Appl. Phys. 49 3 1978 1002–
1011.

w x11 J.D. Jackson, Classical Electrodynamics, 2nd ed., Wiley,
New York, 1975, p. 434 and p. 447.

w x12 W. Shuhong, Master Thesis, Changchun Institute of Optics
and Fine Mechanics, The Chinese Academy of Sciences,
1977.

w x Ž .13 E.D. Palik Ed. , Handbook of Optical Constants of Solids,
Academic Press, Orlando, 1985, pp. 369–408.


