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Abstract

In this paper, a theoretical study of the e�ect of material parameters on the quantum e�ciency of a homogeneous

GaInAsSb infrared photovolatic detector is presented. The considerations are carried out for the near room
temperature and 2.5 mm wavelength. The calculated results show that the quantum e�ciency depends strongly on
the carrier concentrations in the n- and p-regions. In addition, the absorption coe�cient, the surface recombination
velocities and the widths of the two regions also e�ect the quantum e�ciency. # 1999 Elsevier Science Ltd. All

rights reserved.

1. Introduction

Quaternary alloys GaInAsSb have caused much

interest in the present technology of the choice for pre-
sent and future photo-electronic devices [1], because
they give a possible spectral range of 2±4 mm which is
very important for environmental monitoring, optical

®ber communication and infrared imaging
systems [2, 3]. GaInAsSb alloys have been used to fab-
ricate detectors [4, 5] and lasers [6].

Some ®gures of merit of infrared photovoltaic (IR
PV) detectors, such as the detectivity (D *) and the
responsivity (R), are proportional to the quantum e�-

ciency. For instance, D * is given by [7]

D* � R
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where R is the responsivity of a detector, I is the cur-
rent in a detector due to the generation and recombi-
nation processes, Df is the noise bandwidth, A0 is a
detector's optical area and l is the incident light wave-

length. h, c and q are constants with their regular
meaning. Z is the detector's quantum e�ciency. As

shown in Eq. (1), the quantum e�ciency is the import-

ant parameter in e�ecting the performance of detec-

tors. Therefore it is necessary to discuss the e�ect of

material parameters of detectors on the quantum e�-

ciency.

The e�ect of the structure and material parameters

of detectors on the quantum e�ciency and the corre-

lation between the quantum e�ciency and other ®gures

of merit of the PV detectors have led to the publi-

cation of some works in the literature. Rogalsky and

Rutkowsky [8] solved the one-dimensional di�usion

equation in PbSnTe to analyzed the quantum e�ciency

of PbSnTe one-dimensional diode. Rosenfeld and

Bahir [9] showed a theoretical study of the e�ect of the

direction of the incident light on the quantum e�-

ciency of homogeneous HgCdTe photodiodes. Other

interesting works [10, 11], based on the numerical

analysis process, presented computer solutions for the

two- and three-dimensional cases.

However, most of the published research does not

deal with GaInAsSb IR PV detectors. Therefore, a

theoretical study on the quantum e�ciency of a homo-

geneous GaInAsSb IR PV detector is presented in this

paper, in which the dependence of the quantum e�-

ciency on the carrier concentrations, surface recombi-

nation velocities, material thicknesses and absorption

coe�cient is shown.
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2. Detector structure and quantum e�ciency

Our investigation focuses on the structure of n±p
GaxIn1 ÿ xAs1 ÿ ySby shown in Fig. 1, in which the lat-
tice of the GaInAsSb quaternary allay is matched to

GaSb [12]. The light is injected from the n-side or p-
side. In the following, we will mainly discuss the case
of the light injected from the n-side. When we assume

that the uniform signal photon ¯ux f, the number of
incident photons cm2/s unit bandwidth, is incident on
the surface of the n-type GaInAsSb alloy, the gener-

ation rate of hole±electron pairs as a function of dis-
tance x from the surface is [13]

G � a�l��1ÿ r�feÿa�l�x �2�

where r is the re¯ection coe�cient at the front surface.

l is the wavelength of the incident light and a denotes
the absorption coe�cient as a function of l. In Eq. (2),
the re¯ection coe�cient at the back surface is

neglected [14].
For simplicity, a one-dimensional model for the

GaInAsSb detectors is taken. We assume low injection
conditions and an abrupt junction. The in¯uence of

assuming a doping pro®le on detector performance has
been solved by forward condition steady-state
analysis [15]. Basic equations for d.c. analysis have the

®ve well-known equations: two current density
equations for electron Je and hole Jh, two continuity
equations for electrons and holes and Poisson's

equation which are collectively referred to as the Van
Roosbroeck model [16]:

Je � qDe
dn

dx
ÿ qmen

dj
dx

current density for electrons

�3A�

Jh � ÿqDh
dp

dx
ÿ qmhp

dj
dx

current density for holes

�3B�

1

q

dJe
dx
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continuity equation for electrons

�3C�

1

q

dJh
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continuity equation for holes
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In Eqs. (3A)±(E), me and mh are the electron and

hole mobilities, De and Dh the electron and hole di�u-
sion coe�cients, n and p the electron and hole den-
sities, j the electrostatic potential, Nd the concen-

tration of donors, Na the concentration of acceptors
and e0es the permittivity of the semiconductors, G and
R denote the carrier generation and recombination

rates, respectively.
To evaluate Eqs. (3A)±(E) the following bounding

conditions are imposed to the carrier continuity

equations [17]:

Jp � qSn� pn ÿ pn0� �x � 0� �4A�

Jn � qSp�np ÿ np0� �x � t� d � �4B�

pn ÿ pn0 � �x � xn� �4C�

np ÿ np0 � 0 �x � t� xp� �4D�

Eqs. (4A)±(B) account for the front and back surface
recombination velocities (Se, Sp) characterizing the
semiconductor surfaces and Eqs. (4C)±(D) state that
the excess carrier densities are reduced to zero at the

edge of the depletion region [13].
The detector is divided into a depletion region (xn,

t + xp) and two quasi-neutral regions (0, xn) and

(t+ xp, t+ d) respectively. Using these boundary con-
ditions (Eqs. (4A)±(D)) in Eqs. (3A)±(E) and solving
the simultaneous equations, the photocurrents per unit

bandwidth for the three regions (Jn, Jp, Jdr), due to
electrons collected at the junction edge, are given to
be [13]:Fig. 1. The one-dimensional detector model.
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Jn � qf�1ÿ r�aLh

a 2L 2
h ÿ 1

aLh � rh ÿ eÿa�tÿx n��rhch�tÿ xn=Lh� � sh�tÿ xn=Lh��
rhsh�tÿ xn=Lh� � ch�tÿ xn=Lh� ÿ aLhe

ÿa�tÿx n�
� �

�5A�

Jp � qf�1ÿ r�aLe

a 2L 2
e ÿ 1

eÿa�t�x p� �re ÿ aLe�eÿa�dÿx p� ÿ rech�dÿ xp=Le� ÿ sh�dÿ xp=Le�
ch�dÿ xp=Le� � resh�dÿ xp=Le� � aLe

� �
�5B�

Jdr � qf�1ÿ r��eÿa�tÿx n� ÿ eÿa�t�x p�� �5C�
Therefore, the total photocurrent Jph is given by

Jph � Jn � Jp � Jdr �6�
In general, the steady-state photocurrent density Jph is [18]

Jph� f� � qhf �7�
Depending on Eqs. (5A)±(C), (6) and (7), the quantum e�ciency of GaInAsSb detectors from the three regions

(Zn, Zp, Zdr) and the total one (Z) are shown as follows [8]:

Zn �
�1ÿ r�aLh

a 2L 2
h ÿ 1

aLh � rh ÿ eÿa�tÿx n��rhch�tÿ xn=Lh� � sh�tÿ xn=Lh��
rhsh�tÿ xn=Lh� � ch�tÿ xn=Lh� ÿ aLhe

ÿa�tÿx n�
� �

�8A�

Zp �
�1ÿ r�aLe

a 2L 2
e ÿ 1

eÿa�t�x p� �re ÿ aLe�eÿa�dÿx p� ÿ rech�dÿ xp=Le� ÿ sh�dÿ xp=Le�
ch�dÿ xp=Le� � resh�dÿ xp=Le� � aLe

� �
�8B�

Zdr � �1ÿ r��eÿa�tÿx n� ÿ eÿa�t�x p�� �8C�

Z � Zp � Zn � Zdr �8D�

3. Discussions for the calculation results

The calculations have been performed on an n±p

Ga0.8In0.2As0.19Sb0.81 PV detector operated at 300 K
and 2.5 mm wavelength. The dependence of GaInAsSb
alloy parameters such as energy bandgap and re¯ection
coe�cient that are necessary in calculations for the

compositions x and y have been shown in Ref. [12].
For practical calculation, the hole mobility was ®xed
to be mh=240 cm2/V s in the p-region and the electron

one to be me=1000 cm2/V s in the n-region [19]. In ad-
dition, the incident light with 2.48 mm wavelength
close to the intrinsic absorption edge in

Ga0.8In0.2As0.19Sb0.81 is assumed to be injected from
the n-region and then through the depletion region to
reach the p-region. Depending on the injected light

energy, the absorption coe�cient is assumed to be
a= 2.15 � 105 mÿ1 [20]. We also assume that the sur-
face recombination velocities on both sides of the
detector yield large electrical re¯ecting conditions for

the holes and electrons, respectively.
All of the ®gures show the quantum e�ciency

obtained in the detector con®guration as calculated

from Eqs. (8A)±(D). Because the change of mobilities

in the two regions has no in¯uence on the quantum
e�ciency, we don't show their e�ect on the quantum
e�ciency. Except for the mobilities, the other par-

ameters, such as the carrier concentrations, widths,
surface recombination velocities in the two quasi-neu-
tral regions and the absorption coe�cient, all e�ect the
quantum e�ciency. Therefore, in calculation, we only

give the relationship between the quantum e�ciency
and the two parameters, while the remaining par-
ameters are kept constant.

Fig. 2 shows the quantum e�ciency depending on
the carrier concentration of the two quasi-neutral
regions for t= 0.5 mm, d= 5 mm, Se=Sp=0.

Fig. 2 distinctly shows that the total quantum e�-
ciency (Z) is mainly determined by the p-side quan-
tum e�ciency (Zp), while the n-side quantum

e�ciency (Zn) contributes little to Z. In addition, the
depletion region quantum e�ciency (Zdr) has much
e�ect on Z only at a p-side carrier concentration
less than 1014 cmÿ3 in Fig. 2(a). We also ®nd in

Fig. 2(a), that the maximal quantum e�ciency
obtained is almost 40% in the region 1013±
1018 cmÿ3 p-side carrier concentration meanwhile the

n-side carrier concentration is assumed to be 1018
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cmÿ3. In addition, as shown in Fig. 2(b), when the
p-side carrier concentration is maintained at

6.4 � 1015 cmÿ3, the maximal quantum e�ciency will
increase to 46% if the n-side carrier concentration

is reduced to less than 1016 cmÿ3. Fig. 2 indicates
that the quantum e�ciency will be improved with

reduced n- and p-side carrier concentrations. This
calculated result is di�erent from the experiment

results [19, 21], in which the n-side carrier concen-
tration is assumed to be 1017±1018 cmÿ3.
Fig. 3 shows the quantum e�ciency versus the p-

side carrier concentration with the back surface recom-

bination velocity (Se), p-side width (d) or absorption
coe�cient (a) as a parameter, for n = 1018 cmÿ3,
t = 0.5 mm, Sp=0. From Fig. 3 it is indicated that
increasing the back surface recombination from 0 to

Fig. 2. The dependence of the quantum e�ciency on the carrier concentration of (a) the p-region; (b) the n-region. In the calcu-

lations it is assumed: t = 0.5 mm, d= 5 mm, Se=Sp=0, a= 2.15 � 105 mÿ1, me=1000 cm2/V s and mp=240 cm2/V s.

Fig. 3. The quantum e�ciency versus the p-side carrier concentration ( p) with (a) the back surface recombination velocity (Se); (b)

the p-side width (d); (c) the absorption coe�cient (a) as a parameter. In the condition of Sp=0, t= 0.5 mm, n= 1018 cmÿ3,
me=1000 cm2/V s and mp=240 cm2/V s.
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104 m/s only reduces a little quantum e�ciency, while

the thicker width of the p-region and the larger
absorption coe�cient will obtain the higher quantum
e�ciency within p< 1018 cmÿ3. In order to ®nd the

widest thickness of the p-region for the maximal quan-
tum e�ciency, Fig. 4 shows the quantum e�ciency as
a function of the p-side width for p = 6.4 � 1015 cmÿ3

and other parameters, the same as in Fig. 3. Fig. 4 in-
dicates that the quantum e�ciency will reach a satur-
ation value with an in®nite thickness of the p-region

and in corresponding to obtain the saturation detectiv-
ity. However it has been shown that the higher detec-

tivity will be obtained with the thinner p-side width
when the quantum e�ciency is assumed to be
100% [12]. These di�erent results require us renewably

to analyze the e�ect of the p-side width on the detec-
tivity when the quantum e�ciency is considered in the
detectivity, which will be discussed in another paper.

The relationship between the quantum e�ciency and
the n-side carrier concentration with the front surface
recombination velocity (Sp), n-side width (t) and

absorption coe�cient (a) is shown in Fig. 5 for
p= 6.4 � 1015 cmÿ3, d = 5 mm, Se=0. The quantum

e�ciency in Fig. 5(a) and (c) is similar to the one in
Fig. 3(a) and (c), respectively, where the maximal
quantum e�ciency obtained requires reduction of not

only the front surface recombination velocity (Sp) but
also of the back one (Se), on the contrary to increase
the absorption coe�cient. In Ref. [20], the absorption

coe�cient is dependent on the incident light energy
(hn):

aA
�������������������������������������
�1=hn� ÿ �Eg=hn 2�

p
where Eg is the GaInAsSb bandgap energy. Inserting
this equation in Eqs. (8A)±(D), the calculated result
shows that the incident light energy should be

decreased to the band edge absorption in order to get
the maximal Z.

Fig. 4. The quantum e�ciency versus the p-side width (d)

with the back surface recombination velocity (Se) as a par-

ameter. Other parameters are the same as in Fig. 3.

Fig. 5. The quantum e�ciency versus the n-side carrier concentration (n) with (a) the front surface recombination velocity (Sp); (b)

the n-side width (t); (c) the absorption coe�cient (a) as a parameter. In the condition of Se=0, d= 5 mm, p= 6.4 � 1015 cmÿ3,
me=1000 cm2/V s and mp=240 cm2/V s.
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A confusing phenomena appears in Fig. 5(b), for
which it is di�cult to select the optimum n-side width

and carrier concentration for the maximal quantum
e�ciency. However, when the variable and parameter
in Fig. 5(b) reciprocate each other, the clear relation-

ship between the quantum e�ciency and the n-side
width with the carrier concentration as a parameter is
shown in Fig. 6. Due to the complex relationship

between Z and t in Eqs. (8A)±(D), Z appears as a peak
with varying n-side carrier concentration and the peak
increases and tends to the great width of the n-region

with decreasing n-side carrier concentration.
Decreasing the n-side carrier concentration improves
the quantum e�ciency, which coincides with that in
Fig. 2(b). Meanwhile, the n-side width needs to be

adjusted to obtain high quantum e�ciency.

4. Conclusion

In this paper, a theoretical study of the e�ect of ma-

terial parameters of a Ga0.8In0.2As0.19Sb0.81 IR PV
detector on the quantum e�ciency at 300 K has been
carried out. The quantum e�ciency dependent on the

absorption coe�cient, the carrier concentrations,
widths and surface recombination velocities in the p-
and n-regions is calculated. The calculated results
show that the higher quantum e�ciency needs the inci-

dent light energy near to the GaInAsSb band edge
energy and is obtained by reducing the carrier concen-
trations in the n- and p-regions. Moreover, a peak of Z

appears by varying the n-side width in the range of the
low n-side carrier concentration. In addition, the

higher quantum e�ciency is obtained by reducing the
surface recombination velocities, either the front one
or the back one. It is also shown that the quantum e�-

ciency reaches a saturation value with an in®nite thick-
ness of the p-region.
The results in this paper are obtained under the con-

dition of neglecting degeneracy in a
Ga0.8In0.2As0.19Sb0.81 alloy because little degenerated
state exists in the material at a carrier concentration

larger than 1020 cmÿ3. Therefore, in this paper's calcu-
lation and analysis, we neglect the e�ect of degeneracy
and thus we can get clear and concise results that are
very useful for us for further research work in the

future.
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