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Abstract

In this paper, the detectivity for n+±n±p and p+±p±n GaInAsSb infrared detectors in both the front- and

backside illuminated cases are calculated and analyzed, respectively. The in¯uence of the carrier concentration and
width in each layer, as well as the surface recombination velocities at di�erent surfaces of the detectors are
considered. It is indicated that high R0A dose not guarantee the high detectivity because the quantum e�ciency
combines with the R0A to determine the behavior of D �. On the base of the calculations, it is observed that the

di�erent material parameters are required for the optimum D � in the di�erent structures with the di�erent
directions of the light injected. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Antimonide-based semiconductor materials are

receiving increased attention due to their usefulness for

photonic devices, particularly emitters and detectors in

2±5 mm region of the spectrum [1,2]. In these materials,

GaInAsSb quaternary solid solutions grown lattice

matched to GaSb substrates are attractive candidate

materials for opto-electronic devices in the near- and

mid-infrared wavelength range. These devices can be

used for environmental monitoring, optical ®ber com-

munication and infrared imaging systems [3±5]. Also

GaInAsSb quaternary alloys are of great interest for

creation of light sources and photodetectors in 2±5 mm
[6±8]. There have been theoretical analysis on n±p

homojunction GaInAsSb infrared detectors [9,10].

However, most detectors are fabricated in three-layer

structures, in which the surface in¯uence can be e�ec-

tively reduced by the heavily-doped epitaxial layers
[11,12]. Although the zero-bias resistance±area pro-
duct, R0A, of GaInAsSb infrared detectors, on the
base of material parameters, has been reported [13],

the high R0A does not automatically guarantee the
high detectivity D �, because of the e�ect of the quan-
tum e�ciency Z on D �, which is another important

parameter to decide the properties of detectors. In this
paper, the numerical analysis of the quantum e�ciency
(Z ) and the detectivity (D �) are discussed in both n+±

n±p and p+±p±n GaInAsSb infrared detectors, for
both front- and backside illuminated cases. Since R0A
is independent on the light incident light, whether the

detector is front- or backside illuminated cases does
not a�ect R0A.

2. Theoretical model

The detector structures of p+±p±n and n+±n±p
GaInAsSb are shown in Fig. 1. The heavily-doped
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layer surface is de®ned as the frontside and the other
layer surface is the backside. The ®gure of merit
used to characterize the sensitivity of infrared detec-

tors is the detectivity D �, which is related with R0A
and Z,

D� � lZq
hc

�
R0A

4KT

�1=2

l is the incident light wavelength, which is assumed to
be 2.48 mm. R0A and its related parameters have been

evaluated in a previous paper [13]. The detailed calcu-

lation of Z and D � for front- and backside illuminated
cases in n+±n±p and p+±p±n GaInAsSb infrared
detectors is given in this paper.

2.1. Quantum e�ciency in an n+±n±p structure

According to Dhar's report for an n+±n±p structure
[14], at a wavelength l where the absorption coe�cient

is a, the contribution to the internal quantum e�ciency
Z of n+, n, depletion and p layers for the front- and
backside illuminated cases is shown as follows.

Nomenclature

Sp Surface recombination velocity in n- (or
n+-)side

tn� Width in n+-side

n+ Electron concentration in n+-side
lpn� Hole di�usion length in n+-side
Dpn� Hole di�usion coe�cient in n+-side

Snn Interface recombination velocity in n+±n
junction

p+ Hole concentration in p+-side

dp� Width in p+-side
lep� Electron di�usion length in p+-side
Dep� Electron di�usion coe�cient in p+-side
Spp Interface recombination velocity in p+±p

junction
p Hole concentration in p-side
d Width in p-side

le Electron di�usion length in p-side
De Electron di�usion coe�cient in p-side
n Electron concentration in n-side

t Width in n-side
lp Hole di�usion length in n-side
Dp Hole di�usion coe�cient in n-side

Wnp Width of depletion region in n±p junction
Wnn Width of depletion region in n+±n junc-

tion

Wpp Width of depletion region in p+±p junc-
tion

Wn Width in n-side depletion region of n±p

junction
Wp width in p-side depletion region of n±p

junction
K Boltzmann's constant

T Detector temperature
q Electronic charge
s Capture cross section

Nf Trap density
Eg GaInAsSb energy bandgap

Fig. 1. The two structures of a GaInAsSb detector.
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2.1.1. Frontside illuminated case
(1) Quantum e�ciency in the n+ region:
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(2) Quantum e�ciency in the n region:
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(3) Quantum e�ciency in the depletion region:

Zdr � eÿa�tn��tÿwn� ÿ eÿa�tn��t�wp�

(4) Quantum e�ciency in the p region:
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2.1.2. Backside illuminated case

(1) Quantum e�ciency in the p region:
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(2) Quantum e�ciency in the depletion region:

Zdr � eÿa�dÿwp� ÿ eÿa�d�wn�

(3) Quantum e�ciency in the n region:
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(4) Quantum e�ciency in the n+ region:
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In the above two groups of equation, the symbols of D, L and r are de®ned by D � KTm=q, L � �Dt�1=2, r � LS=D.

2.2. Quantum e�ciency in a p+±p±n structure

The expressions of the quantum e�ciency for the front- and backside illuminated cases in a p+±p±n structure are
the same as those in an n+±n±p structure, but the parameters in an n+±n±p structure should be exchanged to the
corresponding ones in a p+±p±n structure, which are shown as following,

n�4p�;Lpn�4Lnp� ;tn�4dp� ;rp4re;rnn4rpp;n4p;Lpn4Lnp;t4d;Wn4Wp;Lnp4Lpn;Wp4Wn;re4rp;d4t;p4n

The parameters before the arrow are the ones in the n+±n±p structure and those after the arrow are in the p+±p±n

structure.

3. Results and discussion

The calculations have been performed on n+±n±p and p+±p±n Ga0.8In0.2As0.19Sb0.81 infrared detectors operated

at 300 K and 2.5 mm wavelength. The results of this model are displayed mostly in the form of plots of Z and D �

versus the carrier concentrations and material widths, for front- and backside illuminated cases. The basic par-
ameters are listed in Table 1 and related parameters have been shown in Ref. [9].

3.1. The detectivity in a p+±p±n structure

Fig. 2 shows the quantum e�ciency (Z ) and its components as functions of p- and n-side carrier concentrations

with other parameters in Table 1 keeping constants, in the backside illuminated case. There are some characters in
Fig. 2: (1) Z is mainly dominated by the p-side component, Zp; (2) the quantum e�ciency in the depletion region,
Zdr, decreases with increasing the p- and n-side carrier concentrations, due to the decreasing of the width in the de-

pletion region; (3) the p-side quantum e�ciency Zp increases with increasing the p-side carrier concentration ( p )
while the n-side quantum e�ciency Zn decreases with increasing the n-side carrier concentration (n ). In addition, in
Fig. 2(a) the quantum e�ciency in the p+-side (Zp� ) markedly rises with increasing p and becomes the main contri-

bution to Z in p>5 � 1017 cmÿ3, which makes Z strongly increased in this range. In Fig. 2(b), Zn and Zdr in n< 1017

cmÿ3 are large enough to improve Z, while in n>1017 cmÿ3, Z is mainly contributed by Zp and a little by Zp� . Due
to Zn and Zdr decreasing, Z decreases with increasing n.
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Fig. 3 shows the dependence of the detectivity (D �)
in the backside illuminated case on the p-side carrier
concentration ( p ) with the p+-side carrier concen-

tration ( p+), the width (dp� ) and the surface recombi-
nation velocity (Se) as parameters, under the condition
of other parameters in Table 1 keeping constant.

Compared to the report in Ref. [13], except that the
shape of D � is similar to R0A with p+=1021 cmÿ3 in
Fig. 3(a) and Se=108 m/s in Fig. 3(c), D � is deter-
mined by Z and its shape is similar to Z in Fig. 2(a). In

addition, Z and R0A have the similar various trend

with the in¯uence of the p+-side carrier concentration
and the surface recombination velocity. That is,
increasing p+ and Se will simultaneously reduce R0A

and Z, therefore D � decreases. The relation between
D � and dp� has a little di�erence from D � related with
p+ and Se. With the change of dp� , D � appears a

intersection at p near to 1017 cmÿ3. In p < 1017 cmÿ3,
D � is determined by R0A and it decreases with increas-
ing dp� because of the same variety of R0A, while in
p>1017 cmÿ3, D � ®rst increases with increasing dp�

and then the value of D � at dp�=0.5 mm far exceeds

Table 1

Basic parameters for the n+±n±p and p+±p±n structures

Basic parameters T = 300 K, x= 0.8, Nf=1014 cmÿ3, ss=10ÿ15 cm2

n+±n±p structure p+±p±n structure

n+-region n-region p-region p+-region p-region n-region

Carrier concentration (cmÿ3) 5 � 1018 1018 1017 1018 1017 1018

Width (mm) 0.5 2 5 0.5 5 2

Mobility (cm2/V s) 1000 1000 240 240 240 1000

Surface recombination velocity (m/s) 0 0 0 0

Fig. 2. The dependence of Z and its components on (a) the p-side carrier concentration ( p ) and (b) the n-side carrier concentration

(n ) for the p+±p±n structure in the backside illuminated case.
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Fig. 3. The dependence of D � on the p-side carrier concentration ( p ) with the p+-side (a) carrier concentration ( p+); (b) width

(dp� ) and (c) surface recombination velocity (Se) as parameters for the p+±p±n structure in the backside illuminated case.
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those at dp�>0.5 mm, which is the same as Z. Fig. 3 in-
dicates that D � is the result of the joint in¯uence of

R0A and Z. With the variety of the p-side width, D � is
similar to that in Fig. 3(b), in which the intersection
appears and moves to a higher p. In this case, D � is

also determined by the R0A and Z.
In Fig. 4 and Fig. 5, the detectivity is depicted as a

function of the n-side carrier concentration (n ), with

the n-side width (t ) and the surface recombination vel-
ocity (Sp) as parameters, in the back- and frontside
illuminated cases respectively. Compared the two

®gures with each other, the results are completely
di�erent.
In the backside illuminated case, the light incident

from the n-side surface is ®rst through the n region

and then reaches the depletion region, in which Zn and
Zdr related with t and Sp will contribute to Z in
n< 1017 cmÿ3 as shown in Fig. 2(b). Moreover from

the expressions for the quantum e�ciency in the back-
side illuminated case, we know that the n-side width is
also one of the major parameters to a�ect the quantum

e�ciency in the p and p+ regions. Increasing t will
markedly reduce Zp and Zp� and at the same time Z
decreases. On the other hand, D � is determined by Z.
Therefore the parameters in the n region have strong

in¯uence on D � as shown in Fig. 4. With increasing t
and Sp, D

� remarkably deceases and its peak moves to

low n with high t in Fig. 4(a) and to high n with high
Sp in Fig. 4(b), respectively.
However, in the frontside illuminated case, D � and

its shape are controlled by R0A and Z through t and
Sp only has a little in¯uence on D � in n< 1017 cmÿ3.
As for the backside illuminated case, Zn and Zdr for the
frontside illuminated case improve Z in n< 1017 cmÿ3.
But the intensity of the light incident form the p+-side
surface is weakened exponentially. When the light

through the n region reaches the depletion region, Zn
and Zdr are so low that only has a little in¯uence on Z.
Meanwhile Zp and Zp� keep constants with the change
of n because they are not related with the n-side par-

ameters. These results in this case determine that Z is
almost not in¯uenced by t and Sp. But R0A with the
change of n rises up and becomes the main contri-

bution to D �. In the frontside illuminated case, D �

with the change of the p+- and p-side parameters are
similar to but slightly higher than the one in the back-

side illuminated case, because Zp� and Zp that are two
main components in Z are improved by the intensity of
the light injected form the p+-side surface and there-

fore D � increases.

Fig. 4. The dependence of D � on the n-side carrier concentration (n ) with the n-side (a) width (t ) and (b) surface recombination

velocity (Sp) as parameters for the p+±p±n structure in the backside illuminated case.
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3.2. The detectivity in an n+±n±p structure

The quantum e�ciency and its components in the

frontside illuminated case are similar to those in Fig.

2. The light injected from the n+-side surface decides

that the quantum e�ciency will be obviously in¯u-

enced by the n+-side parameters.

D � in the frontside illuminated case is shown in Fig.

6 as a function of the n-side carrier concentration (n ),

with the n+-side carrier concentration (n+) and the

width (tn� ) as parameters respectively. In this case, D �

is determined by Z and its shape is similar to Z but not

to R0A. There is an interesting one in Fig. 6: with

increasing n+ and tn� , the value of D � has a opposite

change, from strongly going up to going down. This is

an inevitable result due to the in¯uence of Z on D �, in
which Zn� related with n+ and tn� has much contri-

bution. Moreover, the light injected form the n+-side

surface is ®rst through the n+ region so that the n+-

side width will a�ect not only the quantum e�ciency

in the n+-side but also other region components.

Although R0A can not be in¯uenced by the n+-side

width [13], D � is clearly reduced by increasing tn� in

Fig. 6(b). As the report in Ref. [13], R0A in this struc-

ture is not a�ected by the n+-side surface recombina-

tion velocity (Sp) because of lnp� � tn� . Here we ®nd

that Z is also not related with Sp, and thus D � will not
be changed by Sp.

For the frontside illuminated case, the quantum e�-

ciency in the n region (Zn) is one of the contribution to

Z in n< 1017 cmÿ3. Thus the change of the n-side

width (t ) in¯uences the quantum e�ciency and there-

fore a�ects D �. Fig. 7 shows the dependence of D � on
the n-side carrier concentration with t as a parameter,

in the frontside illuminated case. D � and its shape are

controlled by Z and lowering the n-side width will

improve D �, especially in n>1018 cmÿ3, D � markedly

rises.

As the report for an n±p homojunction GaInAsSb

infrared detector [10], D � as a function of p-side car-

rier concentration is controlled by R0A and its shape is

similar to R0A, but D � is improved by increasing the

p-side width, because Z increases and reaches satur-

ation. This changes the trend of D � in the n+±n±p

structure also appears.

Fig. 8 shows the dependence of R0A, Z and D � on

the p-side width with the p-side surface recombination

velocity (Se) as a parameter, in the frontside illumi-

nated case. The surface recombination velocity reduces

R0A, Z and D �, but Z is much less sensitive to the p-

side surface recombination velocity than R0A and D �,
which can be found in Fig. 9. The shape of D � is com-

Fig. 5. The dependence of D � on the n-side carrier concentration (n ) with the n-side (a) width (t ) and (b) surface recombination

velocity (Sp) as parameters for the p+±p±n structure in the frontside illuminated case.
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pletely di�erent from these of R0A and Z. R0A with the

change of d ®rst goes down at Se=0, and little by little
R0A rises up as Se increases. The quantum e�ciency
with the change of d rapidly increases and then
saturates. D � goes through a peak as d increases,

further the peak moves to a higher d as the surface
recombination increases. D � can be separated into
two parts at the point of the peak: D � is determined

by Z before the peak and by R0A after the peak, re-
spectively.
In Fig. 9, R0A and D � in the backside illuminated

case are plotted as a function of the n-side carrier con-
centration (n ), with the n+-side carrier concentration
(n+) as a parameter, under the condition of other par-

ameters in Table 1 keeping constants. R0A and D �

have the similar various trends, in which the peaks
moves to high n with high n+. In this case, D � related
with other parameters and its shape are also controlled

by R0A, which are similar to in Fig. 9(b). Unlike in the
frontside illuminated case, Z in the backside illumi-
nated case is almost controlled by Zp, while Zn� is too

low to dedicate Z, which induces that the parameters
in the n+-side can not in¯uence Z. Moreover, Zn and
Zdr only have a little contribution to Z through t in

n < 1017 cmÿ3. But as shown in Fig. 9, the value of
D � is not optimum in n < 1017 cmÿ3. Therefore even

Fig. 7. The dependence of D � on the n-side carrier concen-

tration (n ) with the n-side width (t ) as a parameter for the

n+±n±p structure in the frontside illuminated case.

Fig. 6. The dependence of D � on the n-side carrier concentration (n ) with the n+-side (a) carrier concentration (n+) and (b) width

(tn� ) as parameters for the n+±n±p structure in the frontside illuminated case.
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Fig. 8. The dependence of R0A, Z and D � on the p-side width (d ) with the p-side surface recombination velocity (Se) as a par-

ameter for the n+±n±p structure in the frontside illuminated case.
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though the n-side width changes D �, the optimum D �

cannot be obtained in that range.
As for the frontside illuminated case, D � in the

backside illuminated case appears a peak with the

change of the p-side width (d ). Fig. 10 shows D � as a
function of the p-side width (d ), with the n+- and n-
side carrier concentrations as parameters, which are

corresponding to the peak of D � in Fig. 9. The value
of the optimum D � are at d= 10 mm or so. Moreover,
high D � will be obtained with high n+ and n.

In order to ®nd the optimum D � with the material
parameters in the di�erent structures with di�erent
directions of the light injected, the values of D � and

the corresponding conditions and parameters are
shown in Table 2. D � in the frontside illuminated case
is higher than that in the backside illuminated case,
either for the n+±n±p structure or for the p+±p±n

structure, because Zn� in the frontside illuminated case
is higher than the one in the backside illuminated case,
which improves Z and D �.
Depending on these calculation, we know that D �

is much higher than those in the experimental reports
[15,16]. Therefore these results are useful to

improve the properties of GaInAsSb infrared
detectors through the material growth and device
fabrication.

Fig. 9. The dependence of R0A and D � on the n-side carrier concentration with the n+-side carrier concentration (n+) as a par-

ameter for the n+±n±p structure in the backside illuminated case.

Fig. 10. The dependence of D � on the p-side width (d ) with

the n+- and n-side carrier concentrations as parameters for

the n+±n±p structure in the backside illuminated case.
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4. Conclusion

In this paper, the numerical analysis of the detectiv-

ity in the p+±p±n and n+±n±p structure

Ga0.8In0.2As0.81Sb0.19 infrared detectors are performed,

based on the material parameters and the direction of

the injected light. The behavior of D � is in¯uenced by

the R0A and the quantum e�ciency. The conclusions

are drawn as follows.

1. The high D � is obtained with the light incident

from the surface of the heavily-doped layer.

2. The surface recombination velocity in the p-type

material is one of the most important parameter to

e�ect D �. The higher surface recombination velocity

is, the lower D � is.
3. The values of parameters in the heavily-doped layer

are important to a�ect D �. In the p+±p±n structure,

lowering the parameters in the p+-side will e�ec-

tively improve D �, in which it is not related with

the direction of the incident light. However, in the

n+±n±p structure, except for the surface recombina-

tion velocity of the n+-side that does not change

D �, D � in the frontside illuminated case requires the

low value of the parameters in the n+-side, while in

the backside illuminated case, the high n+-side car-

rier concentration is useful to improve D � and the

n+-side width does not a�ect D �.
4. For the p+±p±n structure, except that D � in the

frontside illuminated case varies with the n-side car-

rier concentration in a way that is similar to that of

R0A, D
� is dominated by the quantum e�ciency in

other conditions.

5. For the n+±n±p structure, in the frontside illumi-

nated case, D � with the variety of the n-side carrier

concentration is controlled by the quantum e�-

ciency, while D � with the variety of the p-side car-

rier concentration is dominated by R0A. However in
the backside illuminated case, D � is controlled by
R0A either with the variety of the p-side carrier con-

centration or with that of the n-side carrier concen-
tration.

6. The p-side width (d ) in the di�erent structures has

di�erent in¯uences on D �. For the p+±p±n struc-
ture, lowering d in the higher p-side carrier concen-
tration ( p>1017 cmÿ3) will improve D �. However

for the n+±n±p structure, an optimum d can obtain
the best D �.
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