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Abstract

Ž .The exact solution of the transient hole-burning THB shape has been obtained for systems with a noncorrelated spectral
exchange. The THB shapes have been studied for various values of pump Rabi frequency xr2p , time duration and
pump–probe time separation. It is shown that the correlated line is dominant in the slow spectral diffusion limit, and it
decays with 1re time of the correlation time t ; in the fast limit, the hole is mainly determined by the width of thec

equilibrium frequency distribution a. When x™0, the linewidths are ;3rpt and 2 arp in the slow and fast limit,c

respectively. The model fails to explain the THB experiments in ruby. However, it is more suitable to describe the FID
w Ž . xbehaviors under the same experimental condition V.S. Malinovsky, A. Szabo, Phys. Rev. A 55 1997 3826 . q 1999

Elsevier Science B.V. All rights reserved.
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1. Introduction

Coherent transient phenomena provide sensitive techniques to investigate the dynamical processes in low temperature
Ž .impurity-ion crystals leading to optical dephasing. It is well known that the optical Bloch equations OBE are commonly

used to describe these processes. However, in magnetic systems, experiments have shown serious discrepancies with the
w xpredictions of OBE 1–4 . In these systems, the optical transition frequency has random fluctuations induced by the spin

flip-flops of the impurity ions or nuclei in the host lattice, which are not considered in OBE. Using the different stochastic
models, several studies have been reported to explain the experiments. Two popular theories are based on Gauss–Markov
w x w x w x w x5,6 and random telegraph 7–10 dephasing models, both simulation 11,12 and theoretical 13 studies have proved that
the latter model is more suitable for a paramagnetic ion system at high magnetic field. At low field, the simple modified
OBEs for both models were often used, but the agreement with experiments can be gained only for the parameters out of the

w xlimit condition required by modified OBEs 2,6 . So the stochastic dephasing models are still not clear.
w x Ž .Recently, Malinovsky and Szabo 14 have studied the free induction decay FID behaviors after pulse saturation in

systems with a noncorrelated spectral exchange, and demonstrated that the field dependence of FID rates in two experiments
had a self-consistent explanation in the limit of the slow spectral diffusion. To further test this model, our study focuses on

Ž .another coherent phenomenon, transient hole-burning THB by the same model. The THB shapes are calculated under the
w xcondition of Ref. 3 in both slow and fast spectral diffusion limits, and are compared with the experiments.
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2. Transient hole-burning shape

Ž .Let us consider an ensemble of impurity ions driven by the radiation field. Each ion is a two-level system TLS whose
Ž .optical transition frequency v is modulated by ´ t caused by a perturbing reservoir. We take the same model of random0

Ž . w x Ž . Ž . Ž .w Ž 2modulation ´ t which was described in Ref. 14 , ´ t has a Lorentzian equilibrium distribution w ´ s 1rp ar ´ q
2.x w xa , and it changes instantly then remains constant until the next jump; the jump rate is 1rt . A pump pulse E exp iv tc 1 1

w xwithin time T interacts with the system to burn a hole, and after time t , a weak probe pulse E exp iv t is used tod 2 2
w xmonitor the hole shape. In general, the observed hole shape at time t can be expressed as 15 :

t

n D,x ,t sRe d t dvn v ,T ,ty tŽ . Ž .H H
Tq td

and

t
X Xn v ,T ,ty t s n v ,´ ,T exp i vyDy irT ty t q i ´ t d t 1Ž . Ž . Ž . Ž . Ž .Ž . H2¦ ;½ 5

t

Ž .Here vsv yv is the pump detuning, Dsv yv , xr2p is the pump Rabi frequency, n v,´ ,T is the stochastic0 1 2 1
² : Ž .population difference at the end of the pump pulse, . . . denotes averaging over the random process ´ t , the integration

over v results from the inhomogeneous distribution caused by the crystal field dispersion, and T is the spontaneous lifetime1
Ž .of the upper state T s2T .2 1

Ž . w t Ž X. X xThe hole spectrum contains the average of the product of two functions, n v,´ ,T and exp iH ´ t d t , which depend ont
w x w xthe values of the random fluctuation during pump and probe time intervals, 0,T and t,t . If the time separation t is muchd

Ž . ² Ž .:larger than the correlation time t , the average in Eq. 1 can be factored into the product of n v,´ ,T and of thec
Ž . ² w t Ž X. X x:relaxation function K ty t s exp iH ´ t d t . When t ™0 and the probe pulse is short, the stochastic processes in thet d

Ž .two time intervals are completely correlated just like FID, and the stochastic averaging in Eq. 1 can be described as
w x14,16 :

n v ,T ,ty t sexp i vyDq irT ty t Hn v ,´ ,T K ´ ,ty t d´ 2w xŽ . Ž . Ž . Ž . Ž .Ž .2

Ž .where K ´ ,ty t is the marginal average.
Ž .By a Laplace transformation to Eq. 2 , we get:

w xn v , p , p sexp yiD ty t n v ,´ , p K ´ , p d´ 3Ž . Ž . Ž . Ž . Ž .H1 1

Ž . ` Ž . �Ž .Ž .4 w xwhere K ´ , p sH K ´ ,ty t exp yp q ivy1rT ty t d t, and one can find the expression in Ref. 14 .1 0 1 2
Ž . w xTo obtain n v,´ , p , we start from the kinetic equation of the noncorrelated sudden modulation theory 14 :

ˆ ˆ ˆr ´ syL ´ r ´ qw ´ G rqL 4Ž . Ž . Ž . Ž . Ž .˙ Ž .

where

s ´Ž .12

ˆ ˆ ˆ ˆs ´Ž .r ´ s , L ´ sL q i´ L qGŽ . Ž .21 0 1� 0n ´Ž .
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ˆ ˆ ˆ ˆ ˆ0 q ivL s , L s , Gs l , Ls0 1 0 n0 1 0T 2 tž /2 c0 0 0 � 0T11
ix ix¢ ßT1

U Ž .s ss sr exp iv t , nsr yr is the population difference, n is the equilibrium population difference. The12 21 12 22 11 0

following expressions can be made dimensionless by using a time unit t .c
Ž . Ž .By applying a Laplace transformation to Eq. 4 , one can easily obtain the solution of r ´ , p :

w ´ 1 1Ž .
1ˆ ˆ ˆr ´ , p s G G y r q L . 5Ž . Ž .0ž /ˆ pˆ ˆpqL ´Ž . 1yw ´ Gr pqL ´Ž . Ž .Ž .

Ž .Then n v,´ , p can be expressed as:

22 2n w ´ v q aqkŽ . Ž . I k0 02 2 2n v ,´ , p s 1q I qk I y y I pq tŽ . Ž .Ž .1 0 0 22 2 ½ pq tp v qFŽ . 2

2 2x pq t y I k y I vq´Ž .2 0 0
y 6Ž .2 2 5pq t vq´ qkŽ .Ž .1

where

w ´ d´ w ´ vq´ d´ pq tŽ . Ž .Ž . 222 2I s , I s , k s pq t q x ,Ž .H H0 1 22 22 2 pq tk q vq´ k q vq´Ž . Ž . 1

1 pq t a 1 ak x 2 1Ž .22F s pq q pq q q , t s q1.1,2T k T pq t pq1rT T2 2 2 1 1,2

Ž .By replacing this result into Eq. 3 , one can easily get n v , p , p . After performing the inverse Laplace transformationŽ .1
Ž .of n v , p , p and integrating with respect to v in accordance with the general Eq. 1 , we can get:Ž .1

2 w xpx exp iD ty tŽ .
n v ,T ,ty t dvs AyC exp yB ty t qC aqFyk exp yB ty tw x w x� 4Ž . Ž . Ž . Ž . Ž .H 1 2pF

where

pq1rT pq t aŽ .2 2
As q , B saqFq1rT , B skq t ,1 2 2 2pq1rT pq1rT kŽ .1 1

a pq1rT q pq t aqF rk� 4Ž .Ž .2 2
Cs . 7Ž .

aqFy1yk pq tŽ .Ž .1

Up to now, the result is obtained under the assumption of complete correlation of the system motion during pump and
Ž .probe. In another limit case t 4t , as mentioned above, the stochastic average can be uncoupled, and one can easily getd c
Ž . Ž .it by directly averaging Eq. 6 . The solution can be readily given by Eq. 7 in the limit Cs0. Since the correlation of

Ž .random frequency usually has the form exp ytrt , in the more general case, one just needs to substitute C withc
w Ž . x Ž .C exp y ty tq t rt into Eq. 7 . This is very similar to the situation when one compares the two-pulse photon echod c

decay with the three-pulse decay, where the waiting time T corresponds to t . After integrating with respect to t, we get thew d

final observed hole shape as:

px 2 D A D CU D CU aqFykŽ .1 2 3
n D,x ,t s y q 8Ž . Ž .2 2 2 2 2 2½ 5pF D qH D qH D qH1 2 3
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where

H sB , H sB q1, H sB q1, CU sC exp yt , ustyTy tŽ .1 1 2 1 3 2 d d

D sH 1yexp yH u cos Du qD exp yH u sin Du .w xŽ . Ž .1,2,3 1,2,3 1,2,3 1,2,3

The factors D , D and D are caused by finite probe pulse duration, and usually are not important. In general, the1 2 3
Ž .spectral hole is composed of three Lorentzian lines, the second and third lines in Eq. 8 result from the correlation between

Ž .Fig. 1. The hole shapes versus Rabi frequency xr2p , burning time T and pump–probe time separation t , ts2Tq t . a Ts50 ms,d d
Ž .t s10 ms. The curves 1–3 correspond to xr2ps10, 100, 200 kHz. b xr2ps100 kHz, t s10 ms. The curves 1–3 correspond tod d

Ž .Ts50, 100, 200 ms. c xr2ps100 kHz, Ts50 ms. The curves 1–3 correspond to t s50, 100, 150 ms.d
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Ž .the pump and probe duration. Comparing to Eq. 7 , the additional linewidth 1rt of these two lines is caused by thec

correlation decay during the probe pulse. In the limit of complete correlation, as one can expect, the hole reduces to two
w xLorentzian line-shapes, corresponding to the two exponential decay parts of the FID result 14 . If one neglects the

U Ž .correlation of the system motion during the pump and probe, then C in Eq. 8 is zero, the hole is a single Lorentzian line
Ž .with width aqF rp .

3. Discussion

Ž .To explain the experiments, we take the values of parameters a, t on the basis of the photon echo PE result. Since thec

observed echo decay is exponential, we can restrict the discussion to the limit of the slow and fast spectral exchanges, in
which the PE decay rates are 1rT q1rt and 1rT qa, respectively.2 c 2

w xFirst we consider the slow exchange case, taking at s200, t s15 ms and T s4200 ms, as in Ref. 14 . Fig. 1 showsc c 1

the normalized hole shape calculated for different values of the Rabi frequency xr2p , burning time T and pump–probe
Ž . Ž . Žtime separation t . The hole shapes are expected to contain a broad H and a narrow H line because 1rpt contributesd 1 3 c

Ž . .only an additional linewidth of 21.2 kHz, the first and second lines in Eq. 8 overlap . But, as we can see in Fig. 1, the hole
is a single Lorentzian line, and the linewidth remains unchanged with an increase of the burning time T. The broad line does

Ž .not appear until t )100 ms 4t because the magnitude of the broad line is much smaller than that of the narrow one.d c
w xSo, to obtain a correct hole shape, one cannot neglect the correlation of the system motion, even when t 4t . In Ref. 3 ,d c

the observed hole contains two lines, and the broad hole became deeper with the increase of x ; when xr2p)100 kHz and
t s10 ms, the narrow hole could hardly be separated from the broad one. That is to say, the broad line H does notd 1

correspond to the observed one. In addition, the hole shapes do not exhibit any nutation structure that was predicted by the
w xconventional and modified OBEs 3,6 .

w xFor the fast diffusion limit case, we take ar2ps10.6 kHz, at s1r15. As mentioned in Ref. 16 , the solution agreesc

well with the perturbation theory, and one can neglect the correlation between the pump and probe duration. Fig. 2 shows
w xthe hole shapes that are calculated by applying the condition of Ref. 3 , Ts50 ms, t s10 ms and ts110 ms. We can seed

Ž .that only one line H appears. Since the shapes contain single Lorentzian lines for both slow and fast spectral diffusion1
w xcases, we try to explain the narrow hole behaviors in Ref. 3 in these two limits. To compare with the experimental results,

we take into account the Gaussian shape of the laser beam used in the experiments; the calculated half-width varies with x

w xas shown in Fig. 3. One can find that the results are not satisfied in both limits. As in other theories 2,6,16,17 , it seems that

Fig. 2. The hole shapes versus Rabi frequency x r2p in the fast spectral diffusion limit. The curves 1–3 correspond to x r2p s10, 50,
100 kHz.
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Fig. 3. Field dependence of the hole half-width for a Gaussian shaped beam. The solid curve 1, calculated in slow spectral diffusion limit; 2,
w xin the fast limit; ', experimental data 3 .

the parameters of best fitting to the experiments are also outside the fast or slow diffusion limit, for which PE is
non-exponential.

Ž .In the slow limit, the discrepancy is obviously due to the additional linewidth. When x™0, using Eq. 8 , one can get
the hole shape to second-order in x :

px 2 1 pq2 aq1rTŽ .2
n D,t sŽ . 22½p pq1rT D q4 pr2qaq1rTŽ .1 2

t at 2 at y1 pq2 3r2t q1rTŽ . Ž .d c c c 2
qexp y . 9Ž .22 5ž /t 2 pq t at y1Ž .Ž . D q4 pr2q3r2t q1rTŽ .c 1 c c 2

Here, we have neglected the unimportant line H . At the center of the lines, the magnitude of the second line H is about2 3

hundred times larger than that of the first line H . So line H dominates in the slow limit, and the value of the width of the1 3
Ž . Ž .hole ;3rpt differs from that of the decay rate of FID ;2rpt when x™0. However, they are the same in the fastc c

diffusion limit, ;2 arp .
In spite of these discrepancies, there are still some questions. In fact, the dephasing mechanism in ruby is much more

complex. At low magnetic field, there are two main sources of the spectral exchange. One is controlled by Cr–Cr electron
w xspin interaction, the estimated width of static magnetic broadening is about 70 kHz 3 ; another is due to the superhyperfine

w xinteraction of Cr–Al, the width is about 1.2 MHz 18 , but the major contribution of broadening results from Al nuclei in the
w x Žfrozen core, the flip rate of Al spins is only about 1r1200 ms 19 . So, one can hardly find an interaction t is close to 15c

.ms in ruby which contributes to the large static broadening arps4.2 MHz used in the slow spectral diffusion limit. This
3q w xproblem also occurred when one tried to explain FID behaviors in LaF :Pr by the same model 16 . In addition, the3
w xobserved narrow hole collapsed into the broad line with 1re time of 300 ms 3 , as a result of the spectral diffusion caused

by the superhyperfine interaction of Cr–Al, not the decay of the narrow hole itself. But, under this model, the narrow line
H decays with a 1re time of t , it is contradicting the observation. In the fast limit, the power broadening notably increases3 c

with the increase of burning time, in contrast with the fact that the linewidth of the observed narrow hole almost remained
w xunchanged 3 .

In summary, the noncorrelated frequency exchange model fails to explain the THB experiments in ruby for both slow and
fast diffusion limit cases. However, it is more appropriate to describe the FID behaviors under the same experimental

w xcondition 14 .
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Finally, it is interesting to compare the hole behavior in the fast diffusion limit with that of the conventional OBE. Under
Ž .the condition of cw pump, the hole shape can be obtained in the limit lim pn D,x ,t , and the linewidth H is givenp™ 0 cw

by:

2° ¶T x1~ •H sa 1q 1q 10Ž .cw ) 2 2¢ ß(a 1qx tc

where we neglect the very small terms 1rT and 1rT . Remembering that 1ra corresponds to the transversal relaxation1 2

time T in the conventional OBE, and t often has a small value, thus H is the same as the conventional OBE result in the2 c cw

fast diffusion limit.

4. Conclusion

The exact solution of the THB shape under noncorrelated spectral exchange has been obtained. In general, the hole
contains three Lorentzian lines, two of them arise from considering the correlation of the system motion during pump and
probe time intervals.

The THB shape has been calculated for different values of x , T and t . It is shown that the holes contain only thed

correlation line H in the slow spectral diffusion limit, and decay with 1re time of t ; in the fast limit, the solution3 c

approximately coincides with the result of the perturbation theory, and only the noncorrelation line H appears. For both1
w xlimit cases, the model fails to explain the narrow hole behaviors in Ref. 3 , however, the FID behaviors have been explained

w xsuccessfully by this model 14 . This disagreement may be related to different diffusion mechanisms operating over different
Ž . Ž .time scales for THB )100 ms and FID ;10 ms experiments.

Ž . Ž .When x™0, the linewidths are equal to 2rT q3rt rp and 2 1rT qa rp in the slow and fast limit, respectively.2 c 2

This coincides with PE and FID rates in the fast limit, while it is different in the slow one.
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