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The e�ects of thermal annealing on photoluminescence (PL) and structural properties of a-Si1�xCx:H �lms
deposited by plasma enhanced chemical vapour deposition from CH4+SiH4 mixtures are studied by using infrared,
PL and transmittance{re
ectance spectra. In a-SiC:H network, high-temperature annealing gives rise to the
e�usion of hydrogen from strongly bonded hydrogen in SiH, SiH2, (SiH2)n, SiCHn and CHn con�gurations and
the break of weak C�C, Si�Si and C�Si bonds. A structural rearrangement will occur, which causes a signi�cant
correlation of the position and intensity of the PL signal with the annealing temperature. The redshift of the PL
peak is related to the destruction of the con�ning power of barriers. However, the PL intensity does not have a
signi�cant correlation with the annealing temperature for a C-rich a-SiC:H network, which refers to the formation
of �-bond cluster as increasing carbon content. It is indicated that the thermal stability of C-rich a-Si1�xCx:H
�lms is better than that of Si-like a-Si1�xCx:H �lms.

PACS: 78. 55. Hx, 78. 66. Jg, 61. 43. Dq

Films of a-SiC:H have been receiving much atten-
tion as wide band gap optoelectronic materials which
are compatible with standard silicon technology.1�4

As a promising material, their thermal stability is
very important. To study the thermal stability of a-
SiC:H �lms, we select a set of a-Si1�xCx:H �lms with
di�erent carbon content. A cycle annealing process
is applied to a-SiC:H �lms with increasing tempera-
ture. The microstructure of the �lms will be mod-
i�ed, which will directly a�ect their optical proper-
ties. The infrared (IR) spectra are used to character-
ize the change of chemical bond con�gurations. The
transmittance�re
ectance (T{R) spectra in the UV-
visible near-infrared range are used to explore the
change of a-SiC:H network with the increase of an-
nealing temperature. In order to study further the ef-
fect of annealing on photoluminescence (PL), the PL
spectra are measured for a-SiC:H �lms with di�erent
carbon content. A completely di�erent PL behaviour
for C-rich and Si-like a-SiC:H �lms is found. The re-
lated physics mechanism is discussed.

Films of a-SiC:H were deposited by the plasma en-
hanced chemical vapour deposition (PECVD) system
from SiH4+CH4 mixtures with an rf power of 4W,
an electrode distance of 14mm, a deposition pressure
of 60Pa and a substrate temperature of 180�C. The
�lm thickness was in the range 0.9�1.1�m. Films
were deposited onto di�erent substrates suitable for
di�erent measurements. The uniformity of the de-
position was tested by a Mary-102 type ellipsometer
(1mW He{Ne laser, � = 632:8 nm) and the thickness
was found to vary within 3�5% over the 45 cm2 sil-
icon wafer. In order to obtain the optical gap (Eg)
values, the optical absorption coe�cients in the wave-
length range 200�3200 nm (6.2�0.38 eV) have been
obtained from T{R spectroscopy by a Perkin{Elmer

Lambda 10 spectrophotometer. The bonding con�g-
uration has been studied by an FTIR Perkin{Elmer
2000 spectrophotometer with a resolution of 4 cm�1 in
the range 400{4000 cm�1. The absorption coe�cient
was deduced from the recorded IR spectra taking into
account the absorption in the silicon substrate and the
in
uence of interference fringes. The integrated inten-
sities of the deconvoluted peaks were calculated for
the di�erent vibration modes. The PL spectra have
been measured at room temperature using a JY800
spectrometer with a 300mW Ar+ laser at 514.5, 488.0
and 457.9 nm. Isochronal annealing was carried out on
the a-SiC:H �lms for 30min in vacuum (10�2 Pa) at
annealing temperatures varying between 250{500�C.

Fig. 1 shows the IR absorption spectra of a-SiC:H
�lms deposited by PECVD from the CH4+SiH4 mix-
tures and the peak ascription. To understand the be-
haviour of the di�erent bonding con�gurations as a
function of the annealing temperature for the a-SiC:H
�lms with di�erent carbon content, we show the in-
tegrated intensities of di�erent IR modes as a func-
tion of the annealing temperature. Fig. 2(a) shows
the integrated intensity of the IR mode at 630 cm�1,
attributed to the Si�H wagging vibration, as a func-
tion of the annealing temperature. The integrated
intensity decreases with the increase of the anneal-
ing temperature. Fig. 2(b) shows an increase for the
integrated intensity of the IR mode at 670 cm�1, at-
tributed to the Si�C stretching vibration, as a func-
tion of the annealing temperature. Fig. 2(c) shows a
decrease for the integrated intensity of the mode of
780� 800 cm�1, attributed to the rocking or wagging
vibrations of CH3 radical attached to Si or Si{C, as a
function of the annealing temperature.5 The IR peak
at 2100 cm�1 can be deconvoluted into 2120 and
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Fig. 1. IR absorption spectra of a-
SiC:H �lms as a function of CH4 frac-
tion: (W) wagging; (S) stretching; (B)
bending.

Fig. 2. IR integrated intensities of the decon-
voluted peaks as a function of annealing tem-
perature for the Si{H and SiCH wagging vibra-
tion at 630 cm�1and 780 cm�1, and the Si{C

stretching vibration at 680 cm�1: �� sample

A; �� sample B; �� sample C.

Fig. 3. Values of Eg and B as a
functions of the annealing tempera-

ture: �� sample A; �� sample B;

�� sample C.

Fig. 4. PL spectra as a function of annealing tempera-
ture for (a) sample A (C/(C+Si)=0.21) and (b) sample C
(C/(C+Si)=0.34).

2065 cm�1 peaks. The peak at 2120 cm�1 was at-
tributed to the vibration of the silicon atom bound
with hydrogen atoms in a dihydride con�guration and
lying at the internal surface of the voids in the �lm.5�8

Our experimental results indicate that the IR peak
at 2100 cm�1 shifts to 2080 cm�1 for an annealing
temperature greater than 400�C, which suggests that
those hydrogen atoms in a dihydride con�guration are
unstable at high temperatures. The integrated inten-
sity of the IR mode at 2850�3050 cm�1, attributed to
the stretching vibrations of the CHn group in both sp

3

and sp2 con�gurations,7 decreases with the increas-
ing annealing temperature, which indicates that CHn

groups are unstable under high-temperature anneal-
ing.

The IR integrated intensities of SiHn, SiCH3 and
CHn groups decrease with the increasing annealing

temperature, which suggests that hydrogen e�usion
occurs. Films of a-SiC:H can be regarded as carbon
incorporated into a-Si:H, which leads to two e�ects.
One e�ect is the new defect induced by carbon enter-
ing into the network; the second is the formation of the
SiCH and CHn con�gurations. The existence of new
units is a major reason to produce more microvoids
in a-SiC:H than in a-Si:H networks. As the hydrogen
e�uses from network, many dangling bonds related to
silicon and carbon are created. Furthermore, the weak
C�C, Si�Si, and C�Si bonds will be broken and a
new structural rearrangement will occur. As a result
of this, the IR integrated intensity of the Si{C stretch-
ing mode at 670 cm�1 has a signi�cant increase with
the increase of the annealing temperature.

Table 1. Elemental composition and Eg of a-SiC:H �lms de-
posited from SiH4CH4 plasmas with di�erent methane per-
centage, Y(CH4)=[CH4/(SiH4+CH4)].

SampleY(CH4)C/(C+Si)C (at.%)Si (at.%)H (at.%)Eg (eV)
A 0.85 0.21 10.5 41.1 48.4 2.27
B 0.95 0.34 18.2 35.3 46.5 2.45
C 0.98 0.50 27.9 27.9 44.2 2.85

The optical Tauc gap (Eg) was obtained by T{R
measurements. Eg was determined by extrapolating

the function (�E)1=2 = B(E � Eg) to �(E) = 0,
where � is the absorption coe�cient and B is the
constant proportional to the optical joint density of
states.9 We select a-SiC:H samples from Si-like to
C-rich with carbon content from 10.5 to 27.9%, as
given in Table 1. The change is also con�rmed by
the abrupt reduction in the Tauc slope B from the
Si-like value 885 cm�1=2 eV�1=2 to the C-rich value of
535 cm�1=2eV�1=2.10 The Eg and B values as func-
tions of annealing temperature are shown in Fig. 3,
where these values are approximately constant for
a-SiC:H �lms at low-temperature annealing. How-
ever, they are dramatically decreased for Si-like a-
SiC:H �lms with an annealing temperature greater
than 350�C. The decrease of the B value with the in-
crease of the annealing temperature can be explained
by some increase in the disorder of the structure.11 It
is clear in Fig. 3 that the Eg and B values become sta-
ble for the annealing temperature with the increase of
carbon content. In other words, the thermal stability
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of the a-SiC:H �lm increases with the increase of the
carbon content.

Fig. 4(a) shows the PL spectra for a-SiC:H �lms
with di�erent carbon content at di�erent annealing
temperatures. For the low carbon a-SiC:H �lms (Eg <
2:5 eV), the PL intensity increases at a 250�C anneal-
ing temperature, then the PL intensity is quenched
by the high-temperature annealing process. However,
the PL intensity is almost constant for C-rich a-SiC:H
�lms at di�erent annealing temperatures. To inter-
pret these results, a multiphase network structure for
a-SiC:H �lms was proposed. The IR results supply
a support for multiphase networks, in which the a-
SiC:H amorphous networks consist of SiH, SiH2, SiC,
SiCH3 and CHn groups in sp2 and sp3 carbon con�g-
urations. Roberston12 had calculated the densities of
states (DOS) of Si, SiH, SiC, SiCH, CH and C in sp2

and sp3 con�gurations. According to Bradsk's quan-
tum well model,13 we tentatively divide them into two
phases based on the theoretical results.12 One is the
quantum well region composed of a-Si, a-SiC or sp2

C cluster (in C-rich a-Si1�xCx:H �lms). As carbon
atoms enter into the a-Si:H network, the SiC, CHn and
SiCH phases or sp3 sites (in C-rich a-Si1�xCx:H �lms)
will increase. Owing to a quantum con�nement e�ect,
the larger barrier height of SiHCH, CHn and C in sp3

phase results in a higher ground energy for electrons
in the well compared with SiH in the a-Si:H network.
As a result, the PL peak gives a blueshift with the in-
crease of the carbon content. When the �lms of Si-like
a-SiC:H are annealed at 250�C, structural relaxation
and reconstruction occur, which results in a decreas-
ing defect density. These defects are correlated with
nonradiative recombination centres.14 Thus, the PL
intensity has a small increase compared with the as-
deposited sample. At high-temperature annealing, the
PL intensity decreases, and the PL peak shifts to the
low-energy side (redshift) for the Si-like a-SiC:H �lms.
When the annealing temperature reaches 500�C, the
luminescence peak on the high-energy side disappears,
and only the lower PL peak at 1.5 eV can be observed.
This is due to hydrogen e�usion from SiH2, SiCH and
CHn groups, resulting in a decrease in the content of
SiH2, SiCH and CHn, so that the con�ning action of
barrier becomes weak. Thus, the ground-state energy
of electrons in the wells will decrease. Furthermore, as
the annealing temperature increases, defects increase
because of hydrogen e�usion, which will give rise to in-
creasing nonradiative recombination centres, resulting
in PL signal quenching.

As the annealing temperature increases, the PL in-
tensity is almost constant for C-rich a-SiC:H �lms, as
shown in Fig. 4(b), which is a completely di�erent PL
behaviour from the Si-like a-SiC:H �lms. For C-rich
a-SiC:H �lms, the concentration of the CHn, SiCH
and SiHn groups will decrease with the increase of the
annealing temperature, so the con�ning action of the
barrier regions becomes weak. Moreover, the defect
density increases with the increasing annealing tem-
perature due to hydrogen e�usion from CHn, SiCH
and SiHn groups. These lead to the PL redshift and
to the PL intensity decrease. However, almost con-

stant PL intensity is experimentally observed, which
indicates that the annealing process does not signi�-
cantly a�ect the PL signals. For the C-rich a-SiC:H
�lms, carbon atoms dilute tetrahedral coordinated
sp3-bonded networks, where the carbon atoms have
a tendency to form planar coordinated sp2 sites in
C-rich alloys.15 The presence of � clusters has a pro-
nounced e�ect on the luminescence properties of C-
rich a-SiC:H alloys.4 In �-bonded amorphous semi-
conductors such as a-Si, transitions from localized to
localized (L{L) states are generally forbidden, because
there is little overlap between the initial and the �nal
states which tend to be localized in di�erent regions
of real space.12 In the �-bonded clusters, the valence-
and conduction-band states are localized in the same
part of real space. These states now have a signi�cant
overlap so that these L{L transitions are allowed. As
�-bonded clusters form in C-rich a-SiC:H alloys, the
overlap integral of L{L states increases with the in-
crease of �-bonded clusters. This may account for
the di�erence of the PL behaviours between Si-like
and C-rich a-SiC:H alloys. The independence of PL
intensity from the annealing temperature for C-rich
a-SiC:H �lms suggests that the luminescence is asso-
ciated with clusters as a largely intra-cluster process.

In conclusion, the thermal stability of a-Si1�xCx:H
�lms increases with the increase of carbon content, as
con�rmed by the dependence of the Eg and B values
on the annealing temperature. As carbon atoms en-
ter into the a-Si:H network, the SiHn, SiC, CHn and
SiCH phases or sp3 sites (in C-rich a-Si1�xCx:H �lms)
will increase, which leads to increasing quantum con-
�nement action for the electrons in a quantum well.
The annealing process will lead to the e�usion of hy-
drogen from SiHn, CHn and SiCH groups, causing the
decreasing quantum con�nement action. The PL peak
shifts to the lower-energy side with the increase of an-
nealing temperature and the PL intensity is strongly
correlated with defects for Si-like a-Si1�xCx:H �lms.
However, the PL intensity is almost constant for the
C-rich a-SiC:H �lms with the increase of annealing
temperature, which suggests that the luminescence is
associated with clusters as a largely intra-cluster pro-
cess.
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