Infrared-to-ultraviolet up-conversion luminescence from AlF$_3$: 0.2\%Tm$^{3+}$, 10\%Yb$^{3+}$ particles prepared by pulsed laser ablation

Guanshi Qina,b, Weiping Qina,b,*, Changfeng Wua,b, Shihua Huanga,b, Dan Zhaoa,b, Jisen Zhanga,b, Shaozhe Lua,b

aLaboratory of excited states processes, Chinese Academy of Sciences, Changchun 130021, People’s Republic of China
bChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021, People’s Republic of China

Received 26 October 2002; received in revised form 29 November 2002; accepted 06 December 2002 by B. Jusserand

Abstract

AlF$_3$: 0.2\%Tm$^{3+}$, 10\%Yb$^{3+}$ particles were prepared by pulsed laser ablation (PLA). Under a 978 nm laser diode excitation, intense ultraviolet and weak blue up-conversion emissions were observed in the AlF$_3$: 0.2\%Tm$^{3+}$, 10\%Yb$^{3+}$ particles. Intensity dependence of the up-conversion emissions on the pump power was measured. The results show that the population of the states 1I$_6$, 1D$_2$ and 1G$_4$ may come from a five-photon, four-photon and three-photon energy transfer up-conversion process.

© 2003 Elsevier Science Ltd. All rights reserved.
PACS: 78.55.Hx; 78.20. – e; 78.47. + p
Keywords: E. Luminescence; D. Optical properties

1. Introduction

Recently, short-wavelength solid-state lasers in the ultraviolet (UV) to green spectral range have attracted much attention due to a wide range of applications including high-density optical data storage, color display, and infrared sensor. The phenomenon of frequency up-conversion by using the intrinsic energy level matching of certain rare-earth (RE) ions, as one of the available approaches exploring short-wavelength solid-state lasers, has been investigated widely during the past two decades [1–5]. Excited state absorption (ESA) and energy transfer (ET) can be efficient up-conversion mechanisms in RE doped materials. Shihua Huang et al. [6] reported up-conversion in LaF$_3$: Tm$^{3+}$ excited at 647.1 nm by ESA. Co-doping of Yb$^{3+}$ as sensitizer has yielded a substantial improvement on the up-conversion efficiency in Tm$^{3+}$, Pr$^{3+}$, Ho$^{3+}$ and Er$^{3+}$ doped systems due to the efficient ET between the sensitizer and the pair or triads of RE ions [7–9]. In Yb$^{3+}$-sensitized RE doped materials, efficient infrared-to-UV up-conversion emissions at room temperature have been rarely investigated [9,10]. Studies on efficient UV luminescence materials are very necessary and valuable due to the need of developing short-wavelength solid-state lasers.

In this paper, we reported intense UV up-conversion properties of the AlF$_3$: 0.2\%Tm$^{3+}$, 10\%Yb$^{3+}$ particles prepared by pulsed laser ablation (PLA). With the excitation of a 978 nm-laser-diode (LD), intense UV and weak blue up-conversion emissions were observed. The mechanism responsible for the UV emission was discussed.

2. Results and discussion

1064 nm from a pulsed Nd:YAG laser was used as the light source for PLA. The laser beam was focused onto the target (AlF$_3$: 10\%Yb$^{3+}$, 0.2\%Tm$^{3+}$) prepared by solid state reaction (the raw materials are high purity (99.95\%) AlF$_3$, YbF$_3$ and TmF$_3$) at 1000 °C for 1 h dipped in a beaker filled...
with ethanol at an incidence angle of about 45°. The particles were collected in this beaker. The size of the particles is about 0.1–10 μm and the shape is not regular measured with a transmission electron microscope (JEM-2010), as shown in Fig. 1. X-ray analysis data show that the particles are polycrystalline and mixed phase of α-AlF₃ and β-AlF₃. X-ray photoelectron spectroscopy (XPS) data show that the components of the particles are identical to that of the target. A 978 nm laser diode was focused on a pile of particles by an objective lens (× 20), the up-conversion emission spectra were measured with a fluorescence spectrophotometer (Hitachi F-4500) with the spectral resolution of 2 nm. The pump power of the 978 nm LD was numerate on the controller, which was used to modulate the electric current of the LD.

Fig. 2 is the room temperature up-conversion emission spectrum of the particles excited at 978 nm. Emissions in the UV and visible come from the following transitions: ¹I₆ → ³H₆ (~290 nm), ¹I₆ → ³F₄ (~347 nm), ¹D₂ → ³H₆ (~361 nm), ²F₄ → ²F₃ (~451 nm), ³G₄ → ³H₆ (~476 nm).

In Yb³⁺–Tm³⁺ co-doped systems, different processes may result in up-conversion. Fig. 3 shows the energy level diagrams of Tm³⁺ and Yb³⁺. The pump light excites only the Yb³⁺ ions, and three successive energy transfers from Yb³⁺ to Tm³⁺ populate ³H₆, (²F₃, ²F₂), and ³G₄ [1].

Though the Tm³⁺–Tm³⁺ interaction is weak in the sample with low Tm³⁺ concentration, owing to the large energy mismatch (~3516 cm⁻¹) in the transfer ²F₅/₂ → ²F₇/₂ (Yb³⁺): ³G₄ → ¹D₂ (Tm³⁺), the process ²F₂ → ³H₆ (Tm³⁺): ³H₄ → ¹D₂ (Tm³⁺) may alternatively play the most important role in populating ¹D₂ [10]. Thereafter, the state ¹I₆ can be populated by ²F₅/₂ → ²F₇/₂ (Yb³⁺): ¹D₂ → ¹I₆ (Tm³⁺).

For unsaturated up-conversion, emission intensity, Iₑ, is proportional to Iⁿ, where I is the intensity of the excitation light and the integer n is the number of photons absorbed per up-converted photon emitted [11]. In order to clarify the UV up-conversion mechanism, intensity dependence of the up-converted emissions are shown in Fig. 4 (the particles): at low pump power, n = 4.91 for the emission at 347 nm, n = 4.02 for the emission at 361 nm, n = 4.18 for the emission at 451 nm, and n = 3.04 for the emission at 476 nm. At high pump power, n = 2.76, 2.47, 2.65, 1.3 for the emissions at 347, 361, 451, 476 nm, respectively. The results show that the population of the states ¹I₆, ¹D₂ and ³G₄ come from a five-photon, four-photon and three-photon up-conversion process, which confirms that ET: ²F₂ → ³H₆.
The intensity ratio \(\sigma = \frac{I_{347\text{nm}}}{I_{361\text{nm}}} \) at different pump power

<table>
<thead>
<tr>
<th>Pump power (mW)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.89</td>
</tr>
<tr>
<td>350</td>
<td>0.97</td>
</tr>
<tr>
<td>400</td>
<td>1.12</td>
</tr>
<tr>
<td>500</td>
<td>1.19</td>
</tr>
<tr>
<td>550</td>
<td>1.31</td>
</tr>
<tr>
<td>600</td>
<td>1.38</td>
</tr>
<tr>
<td>650</td>
<td>1.37</td>
</tr>
<tr>
<td>700</td>
<td>1.44</td>
</tr>
<tr>
<td>750</td>
<td>1.48</td>
</tr>
</tbody>
</table>

\(\text{(Tm}^{3+}: 3\text{H}_4 \rightarrow 1\text{D}_2 (\text{Tm}^{3+}) \text{ (four-photon up-conversion process)}) \) is the fundamental process to populate the state \(1\text{D}_2 \). Thereafter, the state \(1\text{I}_6 \) can be populated by \(2\text{F}_{5/2} \rightarrow 2\text{F}_{7/2} (\text{Yb}^{3+}) \); \(1\text{D}_2 \rightarrow 1\text{I}_6 (\text{Tm}^{3+}) \) (five-photon up-conversion process).

The relative intensities of the UV up-conversion emissions versus excitation powers can be investigated simultaneously by recording the emission spectra at 300–400 nm at different excitation powers, as shown in Fig. 5. The results in Fig. 5 were listed in Table 1, which indicates that the intensity ratio \(\sigma \) for 347 nm emission from \(1\text{I}_6 \rightarrow 3\text{F}_4 \) transition to 361 nm from \(1\text{D}_2 \rightarrow 1\text{H}_6 \) transition is augmented with increasing the 978 nm-excitation power. Based on the UV up-conversion mechanism as shown in Fig. 3, we would use the rate equation to explain it.

Let \(\gamma \) represents the radiative transition rate from the \(1\text{D}_2 \) level, \(N_0 \) and \(N \) the population of the states \(2\text{F}_{5/2} (\text{Yb}^{3+}) \) and \(1\text{D}_2 (\text{Tm}^{3+}) \), \(X \) the rate of ET \(2\text{F}_{5/2} \rightarrow 2\text{F}_{7/2} (\text{Yb}^{3+}) \); \(1\text{D}_2 \rightarrow 1\text{I}_6 (\text{Tm}^{3+}) \), \(\beta \) the branching ratio of the \(1\text{I}_6 \) transition to \(1\text{H}_6 \) transition, \(F \) the pump power and \(\Omega \) the absorption cross-section of \(\text{Yb}^{3+} \). At steady state, from the rate equation [6], we have

\[
\sigma = \frac{N_0 \omega \times F \Omega}{\gamma \beta}
\]

(1)

From the formula (1), the intensity ratio \(\sigma \) for 347 nm emission from \(1\text{I}_6 \rightarrow 3\text{F}_4 \) transition to 361 nm from \(1\text{D}_2 \rightarrow 1\text{H}_6 \) transition would be proportional to the pump power \(F \). So increasing of \(F \) would make \(\sigma \) higher.

![Fig. 5. Part of the emission spectra from \(347\text{nm} \) and \(361\text{nm} \) transitions measured at different excitation powers showing the emission intensity ratios between the two transitions with excitation at 978 nm.](image-url)

3. Conclusion

In conclusion, AlF\(_3\): 0.2%\(\text{Tm}^{3+}, 10\%\text{Yb}^{3+} \) particles were prepared by PLA. Under a 978 nm laser diode excitation, intense ultraviolet and weak blue up-conversion emissions were observed in the AlF\(_3\): 0.2%\(\text{Tm}^{3+}, 10\%\text{Yb}^{3+} \) particles. Intensity dependence of the up-conversion emissions on the pump power that the population of the states \(1\text{I}_6 \), \(1\text{D}_2 \) and \(1\text{G}_4 \) may come from a five-photon, four-photon and three-photon energy transfer up-conversion process.

This work was supported by the State Key Project of Basic Research of China and Natural Science Foundation of China (10274082).

References