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Abstract
This paper studies the elastic waves in non-Newtonian (Maxwell) fluid-
saturated porous media with the nonzero boundary slip velocity for pore
size distribution. The coefficient bFm(ω) that measures the deviation from
Poiseuille flow friction in such media is presented. Based on this coefficient, we
investigate the properties of elastic waves by calculating their phase velocities
and attenuation coefficients as functions of frequency and the behaviour of
the dynamic permeability. The study shows that the pore size distribution
removes oscillations in all physical quantities in the non-Newtonian regime.
Consideration of the nonzero boundary slip effect in non-Newtonian (Maxwell)
fluid-saturated porous media results in (a) an overall increase of the dynamic
permeability, (b) an increase of phase velocities of fast Biot waves and shear
waves except in the low frequency domain and an overall increase of phase
velocity of slow Biot waves and (c) an overall increase of the attenuation of
three Biot waves in the intermediate frequency domain except in the deeply non-
Newtonian regime. The study also shows that the attenuation coefficient of slow
Biot waves is small in the deeply non-Newtonian regime at higher frequency,
which encourages us to detect slow Biot waves in oil-saturated porous rock.

1. Introduction

The physics of elastic wave propagation in fluid-saturated porous media has for a very
long time captured the interest of many investigators in exploration seismology, petroleum
geophysics, soil engineering, underwater acoustics and foundation engineering. Elastic wave
propagation measurements are useful and convenient tools for investigating the inner properties
of fluid-saturated porous media. In the theory of elastic wave propagation through porous
media, acoustic velocity and attenuation in sediments and porous rocks are related to physical
properties of the material. Understanding the whole mechanism involved in acoustic energy
dissipation and velocity dispersion during the passage of an elastic wave is an important and
1 Author to whom any correspondence should be addressed.
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192 Z-W Cui et al

interesting problem of acoustics and geophysics. Moreover, in petroleum geophysics, regional
exploration seismology needs direct methods of discovering oil-filled rocks, which should be
based on models of propagation of elastic waves in porous media with realistic fluid.

The theory of elastic wave propagation in fluid-saturated porous media was first considered
by Biot [1] directly at macroscopic level. Biot’s theory of elastic wave propagation in porous
materials is the general framework for studying the effects of fluid movement into and out
of each element of porous material during the passage of elastic waves. Biot predicts the
existence of two kinds of compressional (P) wave in a fluid-saturated porous medium: the fast
P wave (P1 wave) for which the solid and fluid displacements are in phase, and the slow P
wave (P2 wave) for which displacements are out of phase. The slow P wave in water-saturated
sintered glass beads was observed first by Plona [2], and recently this wave has been observed
for the first time in natural water-saturated Nivelsteiner sandstone [3]. Biot’s theory has been
a successful tool for interpreting experimental data for decades, and has been applied in fields
as diverse as geophysics and bone [4].

However, there are many examples of real earth materials for which Biot’s theory does not
seem to explain the dispersion and attenuation very well. Various additions and corrections
to Biot’s theory have been attempted including treating the pore fluid as gel [5], considering
the effects of pore size distribution [5, 6], combining the squirt flow mechanism with Biot’s
mechanism [7], considering the effects of nonzero boundary slip velocity [8] and so on. For
a classic Newtonian fluid, those extended Biot theories can be used to describe interaction
of fluid-saturated solid with the sound. But for oil and other hydrocarbons, often exhibiting
significant non-Newtonian behaviour, they are not appropriate again. Recently, Tsiklauri
and Beresnev [9] treated the pore fluid as a non-Newtonian (Maxwell) fluid and studied the
properties of elastic wave propagation in such fluid-saturated porous media [10]. In [9, 10],
Tsiklauri and Beresnev only considered all cylindrical pores of the same size with a no-slip
boundary, and their studies show that there is oscillation on curves of physical quantities. Note
that in [8] there is an overall decrease of the phase velocities of P1 and shear waves.

The purpose of this paper is to study properties of the elastic wave propagation in non-
Newtonian (Maxwell) fluid-saturated porous media. As a step forward, the novelty in the
present work is that we combine models of Tsiklarui [8], which introduced nonzero boundary
slip velocity, and Tsiklauri and Beresnev [9, 10], which introduced non-Newtonian effects into
the classic Biot theory, into a single more general model for an arbitrary distribution of pore size.
It is more realistic that pores have some distribution of radii. We generalize the expression for
the function bFm(ω), which measures the deviation from Poisseuille flow friction as a function
of frequency. Based on this generalized Biot–Tsiklauri model, we investigated the elastic
waves in non-Newtonian (Maxwell) fluid-saturated porous media with pore size distribution
by calculating their phase velocities and attenuation coefficients as a function of frequency.
We also investigated the behaviour of the dynamic permeability as a function of frequency.
The results of the present paper may be of interest for researchers in the field referred to above
as well as experimental wave propagation in fluid-saturated porous media.

The paper is organized as follows. In section 2, we formulate a theoretical basis for the
generalized Biot–Tsiklauri model. The numerical results are shown in section 3, and our
discussions are given in the last section.

2. The model

We consider the model of a Maxwell fluid flowing in a cylindrical tube whose walls are
oscillating longitudinally and the fluid is subject to an oscillatory pressure gradient. We give
analytical solutions to the problem in the frequency domain. We describe the viscoelastic
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Elastic waves in non-Newtonian (Maxwell) fluid-saturated porous media 193

effect of the fluid using Maxwell’s model, which assumes that

tm
∂τ

∂ t
= −η∇v − τ (1)

where η is the viscosity coefficient, tm is the relaxation time (hereafter m denotes Maxwell)
and v denotes the velocity of the fluid, whereas τ represents the viscous stress tensor. In the
present paper, all quantities that are sinusoidal functions of time contain a factor exp(−iωt),
where ω is angular frequency, so

τ = −η∇v/(1 − iωtm). (2)

Under the assumption that the local relative flow is incompressible (∇ · v = 0), the
equation of motion of the fluid is

ρ f
∂v

∂ t
= −∇ p + η∇2v/(1 − iωtm) (3)

where ρ f and p are the density and pressure of the fluid, respectively. Next, the average force
exerted by fluid on the solid in the direction of motion is obtained.

Following Biot [1], we consider the motion of Maxwell fluid in a three-dimensional duct.
The z-direction is parallel to the boundaries, so the flow of fluid in a duct can be described by
a single component of velocity, i.e. v = v(r)ez . In the cylindrical coordinate system (r, θ, z),
with the relative velocity U1(r) = v(r) − u̇, where u̇ is the velocity of the duct, we can write
equation (3) as

∇2U1 + β2U1 = −X
β2

iω
; (4)

here X = − 1
ρ f

∇ p − ∂ u̇
∂ t is an external volume force [1, 8], and β2 = (ω2tm + iω)ρ f /η.

In light of the recent experimental results in [11], following Tsiklauri [8], we can assume
a boundary slip velocity on the wall of the duct with the diameter of 2a, and then obtain

U1(r) = − X

iω

[
1 − (1 + Ūs)J0(βr)

J0(βa)

]
. (5)

Ūs takes the expression of Tsiklauri [8], so it will not be repeated here. Thus we can find the
cross-section-averaged velocity [1, 9] (J0 and J1 are the Bessel functions)

Ū1(a) = − X

iω

[
1 − 2(1 + Ūs)J1(βa)

βa J0(βa)

]
. (6)

Thus, from (2) the total friction force per unit cross section of the duct can be derived as

2τ

a
= X

iω

η

1 − iωtm

2(1 + Ūs)β J1(βa)

a J0(βa)
. (7)

The fluid cross section occupies a fraction φ (porosity) of the cross section of the bulk
material, so the friction per unit bulk volume is

φ
2τ

a
= φ

X

iω

η

1 − iωtm

2β(1 + Ūs)J1(βa)

a J0(βa)
. (8)

In the present paper, we consider the characteristic pore size with arbitrary distribution,
which may be applicable to a wide variety of actual materials, just as Biot [1] has pointed out.
Some authors [5, 6] have studied the effects of the pore size distribution on the elastic wave
in a fluid-saturated and a gel-saturated porous medium, respectively. Assuming a group of
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194 Z-W Cui et al

capillary tubes with a radial probability density distribution function f (a) with a total porosity
φ, we can express the average force exerted by fluid on the solid as∫ ∞

0
φ

2τ

a
f (a) da = X

iω

η

1 − iωtm

∫ ∞

0
φ

2β(1 + Ūs)J1(βa)

a J0(βa)
f (a) da. (9)

The average Ū1(a) is∫ ∞

0
Ū1(a) f (a) da = K (ω)X = X

iω

{∫ ∞

0

[
2(1 + Ūs)J1(βa)

βa J0(βa)
− 1

]
f (a) da

}
(10)

where K (ω) is the dynamic permeability [9, 12] that describes the frequency dependent
response of the tube to the applied total force on the fluid. The concept of dynamic permeability
has been widely used in other papers [13, 14].

For this section, we presume familiarity with the contents of Biot’s theory [1, 15]. In Biot’s
theory, to evaluate bF(ω) we remember that it is the ratio of the total friction force between
the fluid and the solid to the average relative velocity per unit volume of bulk material. This
coefficient can be obtained from (9) and (10) as

bFm(ω) = iωφρ f
Z(ω)

Z(ω) − 1
(11)

where Z(ω) = ∫ ∞
0

2(1+Ūs )J1(βa)

βa J0(βa)
f (a) da. We only need to replace bF(ω) with bFm(ω) in

Biot’s equation, so we can apply Biot’s theory to non-Newtonian (Maxwell) fluid-saturated
porous media. Similarly, the viscosity correction factor Fm is defined by comparing a physical
quantity of the oscillatory flow with that of the Poiseuille flow.

Fm(ω) = i
ω

ωc

Z(ω)

Z(ω) − 1
. (12)

Fm(ω) measures the deviation from Poiseuille flow friction as a function of the frequency [1, 9].
ωc = φη/ρ f κ0 is Biot’s transition frequency. κ0 is the effective permeability of porous media,
which can be obtained by κ0 = ∫ ∞

0 (φ/8)a2 f (a) da.
When tm = 0 and Ūs = 0, this study corresponds to the generalized Biot theory with pore

size distribution developed by Yamamoto [6]; when tm = 0, all pores are of the same size and
Ūs �= 0, this study corresponds to that of Tsiklauri [8]; when all pores are of the same size,
and Ūs = 0, this study corresponds to that of Tsiklauri and Beresnev [9]; if all pores have the
same size, tm = 0 and Ūs = 0, this study corresponds to that of Biot [1].

The general equations that govern propagation of elastic waves in non-Newtonian
(Maxwell) fluid-saturated porous media are

µb∇2u + (H − µb)∇∇ · u + C∇ · w = ∂2

∂ t2
(ρu + ρ f w)

∇(C∇ · u + M∇ · w) = ∂2

∂ t2
(ρ f u + ρmw)

(13)

where H, C, M are the generalized elastic coefficients deduced by Biot and expressed as

H = Kb + 4µb/3 + (1 − K f /Ks)C,

C = (1 − K f /Ks)M,

M = K f Ks/[φKs + (1 − K f /Ks − φ)K f ]

(14)

and Ks , K f , Kb and µb denote the solid grain modulus, pore fluid bulk modulus, framework
modulus and shear modulus. These quantities are measurable for a porous medium. w =
φ(u f − u) represents the flow of the fluid relative to the solid and is measured in terms of
volume per unit area of the bulk medium, where u f and u are the absolute displacements of
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Elastic waves in non-Newtonian (Maxwell) fluid-saturated porous media 195

the pore fluid and solid phase of a porous medium, respectively. The density of bulk can be
expressed by the density of grain ρs and the density of pore fluid ρ f as ρ = (1 − φ)ρs + φρ f .
ρm = iη/ωκ(ω) is the effective density of the fluid in relative motion. Biot’s dynamic
permeability κ(ω) [14] can be expressed as

κ(ω) = κ0[Fm(ω) − iω/ωc]−1 = i

ω
(1 − Z)φ

η

ρ f
= φ

η

ρ f
K (ω). (15)

Here κ(ω) describes the response of the fluid-saturated porous medium to an applied stimulus,
and characterizes the frequency-dependent behaviour of pore fluid flow. We can find a
comprehensive and detailed discussion of the dynamic permeability in [13, 14].

The velocity and attenuation of Biot’s waves are

Vj = 1/ Re
√

Y j , Q−1
j = 2 Im

√
Y j/ Re

√
Y j j = P1, P2, s (16)

where P1 and P2 denote compressional waves of the first kind and second kind, respectively,
and s denotes a shear wave.

For P1 and P2 waves, Y is determined by the quadratic equation

c2Y 2 − c1Y + c0 = 0 (17)

where

c2 = H M − C2, c1 = Hρm + Mρ − 2ρ f C, c0 = ρρm − ρ2
f ;

for the shear waves, Ys is determined by

Y 2
s = (ρ − ρ2

f /ρm)/µb. (18)

3. Numerical results

In the following, we calculated normalized phase velocities of three Biot waves VP1/VC ,
VP2/VC and Vs/Vt and the attenuation coefficients as well as dynamic permeability using our
more general expression for Fm(ω) given by equation (12). The velocities VP1 and Vs tend to
VC = √

H/ρ and Vt = √
µb/ρ for zero frequency respectively. Pore radii of porous media,

for example a certain carbonate rock [16], can be approximated by a log normal distribution
N(log a, σ 2). The pore radius probability density distribution function is

N(log a) = 1√
2πσ

exp

[
− (log a − log aµ)2

2σ 2

]
(19)

where log aµ and σ 2 are the mean and variance of log-transformed pore radius (log a)

respectively. aµ is the median pore radius.
We select the parameters as in [17]: K f = 2.25 GPa, Ks = 35.7 GPa, Kb = 14.39 GPa,

µb = 13.99 GPa, ρ f = 1000 kg m−3, ρs = 2650 kg m−3, φ = 0.2, η = 0.001 Pa s and
aµ = 7.5 µm. Our selected elastic constants from [17] are for a typical sand rock. As in [6],
we can obtain the permeability by κ0 = φ

8 a2
µ exp[2(σ ln 10)2]. σ = 0 corresponds to the case

where all pore radii have the same size. Here, we use De to denote the Deborah number, which
is defined as the ratio of the characteristic time viscous effect tv = a2

µρ f /η to the relaxation
time tm , i.e., De = tv/tm . It is the Deborah number that determines in which regime the
system resides. For a small De, the system exhibits a viscoelastic behaviour, which we call
the non-Newtonian regime.

In figure 1 with σ = 0 we plot phase velocities for six different cases: the thick solid
curve corresponds to ξ = 0, De = ∞ i.e., no-slip boundary and Newtonian fluid-saturated case
(Biot’s model), the long dashed curve corresponds to ξ = 0.5, De = ∞ (Tsiklauri model [8],
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196 Z-W Cui et al

ξ is the weight factor of the boundary slip effect), the short dashed curve corresponds to ξ = 0.0,
De = 10 (Tsiklauri–Beresnev model [9, 10]), the dash–dot–dot curve corresponds to ξ = 0.5,
De = 10, the dotted curve corresponds to ξ = 0.0, De = 1 (Tsiklauri–Beresnev model) and
the thin solid curve corresponds to ξ = 0.5, De = 1. The last two cases correspond to the
deeply non-Newtonian regime. From figures 1(a) and (c), we can find that the introduction of
the slip boundary into the non-Newtonian (Maxwell) fluid-saturated porous media results in
phase velocities of P1 and shear waves settling at a somewhat lower value than those in the
no-slip-boundary case at low frequencies. However, there is an increase of phase velocities of
P1 and shear waves except at low frequencies in contrast to the decrease of phase velocities in
Newtonian fluid-saturated porous media (also see [8]). We also can find that phase velocities of
P1 and shear waves are somewhat smaller in value than those in the Newtonian fluid-saturated
case at lower frequencies. From figure 1(b) we notice that there is an increase of phase velocity
of P2 waves at all frequencies. The introduction of the slip boundary into non-Newtonian
(Maxwell) fluid-saturated porous media results in the phase velocity of P2 waves settling at a
somewhat higher value than those in no-slip-boundary cases, which is similar to [9, 10]. Here
we notice the appearance of sharp oscillatory curves in the deeply non-Newtonian regime,
which means that the wave has entered the non-Newtonian regime.

In figure 2 we plot the attenuation of P1, P2 and shear waves as a function of frequency
for six cases as in figure 1. We notice that the attenuation coefficients settle at higher values in
non-Newtonian fluid-saturated porous media with slip boundary (ξ �= 0) than those in no-slip-
boundary cases. The attenuations in the deeply non-Newtonian regime (both slip and no-slip
boundary cases) are much higher than those in the Newtonian fluid-saturated case at lower
frequencies, which comes to our notice even in the general non-Newtonian regime (De = 10).
The pronounced oscillatory curves in the deeply non-Newtonian regime can be noticed again.

In figure 3 we plot the value of dynamic permeability as a function of frequency for six
cases as in figure 1. We observe that non-Newtonian effects cause substantial enhancements
in dynamic permeability, and slip boundary effects enhance the value of dynamic permeability
for all cases. The oscillatory curves in the deeply non-Newtonian regime can be noticed again.
In figures 1–3, the appearance of oscillation in the curves is due to non-Newtonian effects.

In figure 4 we plot the velocities corresponding to six different cases as in figure 1. In
one case, we consider the effect of pore size distribution, which is more realistic than the cases
where all pores have the same size. We choose σ = 0.2 and only consider the non-Newtonian
effects and the slip boundary effects because the attenuation and velocity characteristics of three
Biot waves in such porous media becomes strongly dependent on the pore size distribution as
discussed by Yamamoto and Turgut [6]. From figure 4 we can observe that there is no sharp
oscillation on curves in non-Newtonian fluid-saturated porous media. Oscillations are removed
due to weighted superposition of different pore radii based on Z(ω). From figures 4(a) and (c)
we can find that the introduction of the slip boundary into the non-Newtonian (Maxwell) fluid-
saturated porous media results in phase velocities of P1 and shear waves settling at a somewhat
lower value than those in the no-slip-boundary case at low frequencies; however, there is an
increase of phase velocities of P1 and shear waves except at low frequencies in contrast to the
decrease of phase velocities in Newtonian fluid-saturated porous media (also see [8]). From
figure 4(b) we notice that there is an increase of phase velocity of P2 waves at all frequencies.
The introduction of the slip boundary into non-Newtonian (Maxwell) fluid-saturated porous
media results in the phase velocity of P2 waves settling at somewhat a higher value than the
no-slip-boundary cases, which is similar to [10]. The phase velocities of P1 and shear waves
somewhat smaller in value than those in the Newtonian fluid-saturated case at lower frequencies
can be observed again.
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Figure 1. Behaviour of the normalized phase velocity of the P1, P2 (compressional wave of the
first kind and compressional wave of the second kind) and shear waves as a function of frequency
for six cases. (a) P1 waves; (b) P2 waves; (c) shear waves. The thick solid curve corresponds to
the case ξ = 0, De = ∞ i.e. no-slip-boundary and Newtonian fluid-saturated case (Biot’s model),
the long dashed curve corresponds to ξ = 0.5, De = ∞ (Tsiklauri’s model), the short dashed
curve corresponds to ξ = 0.0, De = 10 (Tsiklauri–Beresnev model), the dash–dot–dot curve
corresponds to ξ = 0.5, De = 10, the dotted curve corresponds to ξ = 0.0, De = 1 (Tsiklauri–
Beresnev model) and the thin solid curve corresponds to ξ = 0.5, De = 1, respectively. All cases
correspond to σ = 0 (no pore size distribution).

In figure 5 we plot the attenuation coefficients with pore size distribution as in figure 4.
We also find that the sharp oscillatory curves in figure 2 disappear, which is due to weighted
superposition of different pore radii based on Z(ω). Introducing the slip boundary into non-
Newtonian fluid-saturated porous media results in the attenuation of Biot’s waves settling at
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Figure 2. Attenuation coefficient of the P1, P2 and shear waves as a function of frequency for six
cases as in figure 1. (a) P1 waves; (b) P2 waves; (c) shear waves. All cases correspond to σ = 0
(no pore size distribution).

a somewhat higher value than those in the no-slip boundary case. In the lower frequency
domain, the attenuation values of Biot’s waves are obviously much higher than those predicted
by Biot’s model. The attenuation of the P2 wave in the deeply non-Newtonian regime is much
smaller than that in Newtonian fluid-saturated porous media in the higher frequency domain.

In figure 6 we plot the value of dynamic permeability with pore size distribution for six
cases as in figure 3. The results show that oscillations on curves disappear, due to weighted
superposition of different pore radii based on Z(ω) and both the slip boundary effect and
non-Newtonian effect result in enhancement of dynamic permeability. In figure 7 we plot the
value of dynamic permeability for the very deeply non-Newtonian regime (De = 0.1); we can
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Figure 3. Behaviour of normalized dynamic permeability |κ(ω)|/κ(0) as a function of frequency
for six cases as in figure 1. All cases correspond to σ = 0 (no pore size distribution).

obtain an increase in permeability of up to about seven times at certain resonant frequencies,
that of slip boundary case is only slightly higher than that of no slip boundary occurred. As
Tsiklauri and Beresnev [9] pointed out, in crude oil, there are certain resonant frequencies at
which oil production can be increased significantly if the well is irradiated with elastic waves
at those frequencies.

4. Discussions

In the present paper, as a step forward, we have combined models by Tsiklarui [8], which
introduced nonzero boundary slip velocity, and Tsiklauri and Beresnev [9, 10], which
introduced non-Newtonian effects into the classic Biot theory, into a single more general
model for an arbitrary distribution of pore size. We derived the coefficient bFm(ω) that
measures the deviation from Poiseuille flow friction by including the pore size distribution,
nonzero boundary slip velocity and non-Newtonian effects. It is convenient to replace bF(ω)

by bFm(ω) in Biot’s equations in order to study the properties of elastic waves in non-
Newtonian (Maxwell) saturated porous media. We have studied the properties of the elastic
wave propagation in non-Newtonian (Maxwell) fluid-saturated porous media with pore size
distribution by calculating their phase velocities and attenuation coefficients as a function of
frequency. We also investigated the behaviour of the dynamic permeability as a function of
frequency.

For the cases of all pores having the same size, the appearance of oscillation in curves
(figures 1–3) is due to non-Newtonian effects based on equation (12), that has been derived
for pore fluid as a Maxwell fluid. However, we cannot confirm that such strong oscillatory
phenomena should be attributed to the non-Newtonian effects, because they can appear in gel-
saturated porous media due to gel behaviour in [5]. The two models have similar formulation,
namely, the viscosity η is replaced by ‘complex viscosity’ η(1 + iµg/ωη) (µg is the shear
rigidity of the gel) in the gel model [5] and the viscosity η is replaced by ‘complex viscosity’
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Figure 4. Behaviour of normalized phase velocity of the P1, P2 and shear waves as a function of
frequency for six cases as in figure 1. (a) P1 waves; (b) P2 waves; (c) shear waves. Here, all cases
correspond to σ = 0.2 (with pore size distribution).

η/(1 − itmω) in the Tsiklauri–Beresnev model [9, 10]. When ω → ∞, the gel model behaves
as the classic Biot model [1]; when ω → 0, the Tsiklauri–Beresnev model behaves as the
classic Biot model. But this study shows that the non-Newtonian effect is another important
attenuation and velocity dispersion mechanism of elastic waves in saturated porous media.

The inclusion of pore size distribution in our general Biot–Tsiklauri model removes
oscillations in the physical quantities in the non-Newtonian regime, even in the deeply non-
Newtonian regime. Because of weighted superposition of different pore radii based on Z(ω),
oscillations in the physical quantities are removed. It is more realistic to suppose that the pores
have some distribution of radii, naturally in accord with the view of statistical physics.
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Figure 5. Attenuation coefficient of the P1, P2 and shear waves as a function of frequency for six
cases as in figure 1. (a) P1 waves; (b) P2 waves; (c) shear waves. Here, all cases correspond to
σ = 0.2 (with pore size distribution).

The combination of nonzero slip boundary and non-Newtonian effects results in

(a) an overall increase of the dynamic permeability,
(b) an increase of phase velocities of fast Biot waves and shear waves except in the low

frequency domain and an overall increase of phase velocity of slow Biot waves and
(c) an overall increase of the attenuation of three Biot waves in the intermediate frequency

domain except for the deeply non-Newtonian regime.

Apart from other mechanisms, combination of nonzero boundary slip and non-Newtonian
effects is a valid physical mechanism for energy loss, and may be responsible for the deviations
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Figure 6. Behaviour of normalized dynamic permeability |κ(ω)|/κ(0) as a function of frequency
for six cases as in figure 1. Here all cases correspond to σ = 0.2 (with pore size distribution).
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Figure 7. Behaviour of normalized dynamic permeability |κ(ω)|/κ(0) as a function of frequency
for four cases in order to observe the effects of the deeply non-Newtonian regime. The thick
solid curve corresponds to the case ξ = 0, De = ∞ (Biot), the long dashed curve corresponds
to ξ = 0.5, De = ∞ (Tsiklauri), the short dashed curve corresponds to ξ = 0.0, De = 0.1
(Tsiklauri–Beresnev) and the thin solid curve corresponds to ξ = 0.5, De = 0.1. Here all cases
correspond to σ = 0.2 (with pore size distribution).

between theory and experiment. The properties of velocity and attenuation may be used to
explain experiment or field data. When other acoustic energy dissipation phenomena come
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into play, other mechanisms (for example the ‘squirt flow’ mechanism [7]) have to be invoked
to match the theory model to experimental data.

The results also show that it is of advantage to observe the slow Biot wave in the deeply
non-Newtonian regime at higher frequency because of smaller attenuation. This encourages
us to detect the Biot waves in crude-oil-saturated porous rock or cancellous bone. It may be
easy to observe the Biot waves in porous media saturated with non-Newtonian (Maxwell) fluid
by an experimental method.

The investigation of properties of elastic waves in fluid-saturated porous media is important
for a number of applications. For example, in petroleum geophysics, regional exploration
seismology needs an acoustic model to simulate acoustic logging waveforms, to estimate rock
parameters (porosity, permeability) from borehole guided waves (e.g. Stoneley waves) and to
discover oil-filled bodies of rocks. It should be based on models of propagation of elastic
waves in porous media with realistic fluid. It is possible to correctly describe the process of
elastic wave distribution in fluid-saturated porous media in the presence of an adequate model.
Therefore, our generalized Biot–Tsiklauri model may be very useful.

However, the key limitation of this study is that the assumption of smooth capillary tubes
does not capture the complexity of the sandstone pore geometry, and natural porous media, for
example rocks, have a very different distribution of pore diameters. In the future work, we need
to consider the effects of the tortuosity and ‘squirt’ flow in order to mimic the natural porous
media more realistically. Moreover, we also assume a boundary slip in a non-Newtonian
fluid, and take the phenomenological expression for the boundary slip velocity of Tsiklauri’s
article [8]. As Tsiklauri pointed out, ‘it may be possible to derive an expression based on more
general “first principle”, which should be a future work’.
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