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Y,05:Eu nanotubes were fabricated by a surfactant assembly mechanism. The tubular structure was
characterized by transmission electron microscopy. Under an ultraviolet-light excitation, the
nanotubes show a relatively intense emission peak at 618 nm besides the 610 nm peak, different
from that of single ¥O5:Eu nanocrystallites. The results of laser-selective excitation indicate that
the emission centers near the surface of nanotube walls exhibit inhomogenously broadened spectra
without spectral structures while the two sitgsites B and € inside the nanotube walls present
legible spectral structures. It is concluded by the number and peak positions of Stark levels that the
sites B and C possess different site symmetries.2@3 American Institute of Physics.

[DOI: 10.1063/1.1542685

One-dimensional structures, such as nanotubes, are amount of yttrium and europium chlorides at a molar ratio of
tracting a great deal of attention in both fundamental an®8:2 were added in, the mixtrure was stirred to be a trans-
applied studie$-3 They could be used to study the physical parent solution. Urea was used to adjust pite of the solu-
and chemical properties of molecules confined in their innetion in order that precipitation occurred. The precipitate was
and outer spaces. They could find potential applications iseparated, washed thoroughly, and dried in air. The resulting
fields such as photoelectronics, advanced catalysis, and eselid was put into a furnace. The temperature was gradually
ergy storage/conversion, and also could be designed tised to 500 °C and maintained at that temperature for 3 h.
mimic biological channels. The interests in nanotubular maAfter cooling to room temperature, the sample was annealed
terials thus stimulated researchers to extensively expand thagain at 800°C fo2 h to decompose the surfactant mol-
family of inorganic nanotubes from carbon-based substancescules. The tubular structure was observed using a JEM-
to sulfides*® nitrides® and oxides™® 2010 (JEOL) transmission electron microscogeEM). The

Rare earth compounds have been extensively applied tsamples were mounted in the helium exchange gas chamber
high-performance magnets, luminescence devices, catalystsf, a closed cycle refrigeration system and their temperature
and other functional materials. Most of these functions demaintained at 10 K. A Rodamine 6G dye laser pumped by a
pend strongly on the composition and structure. Recentlgecond harmonic of a Nd:yttrium—aluminum—garnet pulsed
Yadaet al? reported the synthesis of rare eafffr, Tm, Yb, laser was used as the excitation source. The fluorescence
Lu) oxide nanotubes templated by dodecylsulfate assembliespectra were obtained with a Spex 1403 spectrometer. Pho-
The nanotubes have small inner diameters of 3 nm and sing@luminescence signals were detected by a photomultiplier,
thin inorganic walls of about 1 nm. However, except for theaveraged with a boxcar integrator, and processed by a com-
four oxides, no nanotubular structures were obtained witlputer. Room-temperature emission spectra were recorded
yttrium and the other lanthanides. The reason was attributedith a Hatachi F-4500 fluorescence spectrometer using a Xe
to the differences in ionic radii of their trivalent forms re- lamp as the excitation source.
sponsible for their coordination numbers and basicities. In TEM image confirms the formation of ;05:Eu nano-
this letter, ¥,03:Eu nanotubes were prepared by a similartubes. As shown in Fig. 1, the central part of the cylindrical
but a little different method. ¥O3;:Eu phosphor is com- sample is white and the two peripheries are black, suggesting
monly used as a red emitting material for field emission disthe formation of single nanotubes. A bundle aggregate of
play technology, so we focus our attention on the luminesseveral nanotubes is also observed in the TEM image. The
cence properties of O3:Eu nanotubes. In addition, we typical outer diameters of the nanotubes are in the range of
believe that single nanotubes can be converted into a con20—30 nm and the walls are estimated to be several nanom-
posite structure for particular applications by filling and coat-eters in thickness. The inset shows the electron diffraction
ing the tubes with functional molecules, which cannot bepattern recorded perpendicular to the nanotube long axis,
expected for bulk materials. which reveals that the nanotubes are in crystal phase and also

The method for fabricating XO3:2%Eunanotubes is as stable enough to withstand the irradiation of convergent
follows: surfactant such as sodium dodecylsulfate selfhigh-energy electron beam.
organizes into rodlike micelles when its concentration is  Figure 2 presents the room-temperature emission spectra
about 0.09 mol/L in a water solution at 40 °C. After a certainof Y,O5:Eu nanotubes and nanocrystalline powders under
394 nm excitation. The YO5;:Eu powders with an average
3Author to whom correspondence should be addressed; electronic maifiZ€ Of 20 nm were obtained by combustion synth&5Ene

wpgin@public.cc.jl.cn peak at 610 nm is due to the forced electric dipole transition
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FIG. 3. Excitation spectra of Y0;:Eu nanotubes. The solid and dashed
lines were taken at the emission wavelength of 618 and 610 nm, respec-
tively. The arrows indicate different excitation positions. The corresponding
emission spectra were listed in Fig. 4.

100nm *©

FIG. 1. TEM image of ¥O3:Eu nanotubes. The inset shows the electron
diffraction pattern recorded perpendicular to the nanotube long axis.

has a long tail extending to the high-energy side, and also its

(°Do—F,), which is allowed on condition that the eu- linewidth is broader than those of peaks B and C. Spectra 1,
ropium ion occupies a site without an inverse center. Its in2, and 3 were obtained by exciting different positions of peak
tensity is hypersensitive to crystal environments. The peaka. No Stark splittings can be discerned from the spectra. We
near 590 nm derive from the allowed magnetic dipole tranpropose that peak A may originate from the emission centers
sition (°Dy— ‘F;). The relative intensity oPDo—F, to  near the surface of the nanotube walls. Qualitatively, in view
°Dy— 'F, transitions in %O5:Eu nanotubes decreases com-of the coexistence of outer surface and inner surface, the
pared with that in ¥O3:Eu nanocrystallites. Furthermore, a Y,05:Eu nanotubes have a high ratio of surface to volume
comparatively intense peak at 618 nm appears in the emisvhich enhances the number of surface states. As a result, the
sion spectrum of ¥O3:Eu nanotubes. It is known that the Euw** ions near the surface may locate at various symmetry
Eu®* ions occupy the §and G symmetry sites in cubic sites because the surface states modify the site symmetry
yttria.* The tubular %05:Eu material has different structure irregularly. Therefore, no spectral structure is observed from
from the nanocrystalline powders, so site selective excitatiothe three emission spectra broadened inhomogeneously.
was performed to distinguish the different sites occupied bySpectrum 4 was measured by exciting the peak position of
the EG™ ions in the nanotubes. peak B. The three Stark splittings f&; multiplets and five

Figure 3 gives the low-temperature excitation spectra ofor ’F, multiplets can be clearly discerned. Spectrum 5 was
the nanotubes, where the excitation peaks correspond to theken by exciting the peak position of peak C. The spectrum
"Fy—°Dy transition. The dashed line was taken at the emisexhibits three Stark splittings for boftD,— 7F; transition
sion wavelength of 610 nm. An intense peakarked A  and®°D,— F, transition. The number ofF, multiplets and
with two weak peakgmarked B and C, respectivglyn the  the peak positions dff ; multiplets in spectrum 5 are differ-
low-energy wing was observed. The solid line was measurednt from those of spectrum 4. Spectra 4 and 5 present clear
by monitoring the emission wavelength of 618 nm, and onlyspectral structure, which indicates that peaks B and C origi-
peaks B and C were observed. This means that the 610 amthte from the emission centers in a crystalline rather than
618 nm peaks derive from different emission centers. Thelisordered environment. Interfacial models of nanocrystal-
site-selective emission spectra were measured at 10 K bjhe materials consist of a crystalline core with a slightly
using different resonant excitation wavelengths into g disordered surface lay& Accordingly, we suggest that
—°D, absorption bands. The excitation positions are labelegheaks B and C derive from two different sitdabeled as
with numbers 1-5, as indicated by the arrows in Fig. 3. The
corresponding emission spectra are shown in Fig. 4. Peak A
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FIG. 2. Comparison of emission spectra betwee®y Eu nanotubes and FIG. 4. Emission spectra of )05 :Eu nanotubes corresponding to different
Y,05:Eu nanocrystallites. excitation positions in Fig. 3.
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