High-power vertical cavity surface emitting laser with good performances

C. Yan, Y. Ning, L. Qin, Y. Liu, L. Zhao, Q. Wang, Z. Jin, Y. Sun, G. Tao, G. Chu, C. Wang, L. Wang and H. Jiang

Fabrication and performance of a high-power bottom-emitting InGaAs/GaAsP vertical cavity surface emitting laser with 430 μm diameter are described. The device realises the maximum room temperature CW output power 1.52 W at 987.6 nm with FWHM 0.8 nm. The far-field divergence angle is below 20°. Reliability test shows at 70°C an output power 0.35 W over 500 h.

Introduction: High power of vertical cavity surface emitting lasers (VCSELs) is important for many applications such as pumped fibre amplifiers or fibre lasers or solid-state lasers [1, 2]. The continuous wave (CW) optical power 0.89 W at room temperature has been reported for a single large-area (320 μm diameter) VCSEL with InGaAs/GaAs quantum wells (QWs) [3]. More than CW optical power of 1 W at room temperature for a VCSEL array consisting of 19 elements has been also realised [4]. At the same time, a novel vertical external cavity surface emitting laser (VECSEL) is also reported in the watt regime using an extra cavity mirror [5]. The single large-area device or arraying of elements or the novel VECSEL provides choices for achievement of high-power surface-emitting lasers. For the advantages of the monolithic VCSEL in fabrication and application, to fabricate a single large-area VCSEL, which combines high optical output power in the watt regime, narrow spectral width, and good quality laser beam in CW operation at room temperature is a practical aim. By employing larger aperture and further improved device processing, a single VCSEL can be promising for higher output power, and we put our efforts on this aspect. In this Letter, we report a high-power bottom-emitting InGaAs/GaAsP VCSEL with 430 μm diameter. The device produces the maximum CW optical output power of 1.52 W at 987.6 nm wavelength with full-width at half-maximum (FWHM) of 0.8 nm at room temperature.

Device structure and processing: The device structure consists of a multiple quantum well active region sandwiched in between n- and p-distributed Bragg reflector (DBR) mirrors (see inset of Fig. 1). The active region contains three 6 nm-thick InGaAs/GaAs quantum wells embedded in 8 nm-thick GaAs/AlGaAs barriers. The carbon-doped p-type DBR consists of 35.5 pairs of Al0.12Ga0.88As/GaAs. A 30 nm-thick Al0.98Ga0.02As layer located between the active region and the top p-type mirror is oxidised and converted to Al2O3 in the fabrication process for current confinement. The silicon-doped n-type DBR has only 25.5 pairs of Al0.9Ga0.1As/Al0.98Ga0.02As. A simple butt-coupling arrangement.

Device performances: The device operates in CW condition at room temperature (24°C). Fig. 1 shows L-I-V characteristics. Threshold current (Ith) of the 430 μm-diameter device is about 0.7 A with a differential resistance of 0.11 Ω. The maximum CW optical output power is up to 1.52 W at current 5 A. The maximum conversion efficiency is 12.0%, and the slope efficiency is up to 0.39 W/A.

Fig. 2 Lasing spectra and far-field patterns of laser at different currents of 1, 3, 5 A

a) Lasing spectra
b) Far-field patterns

Reliability is also a critical issue. Fig. 3 shows the life test of randomly-picked VCSEL. During life test, it is driven by 1.5 A constant current and temperature controlled at 70°C.

Fig. 3 Life test of randomly-picked VCSEL

During life test, it is driven by 1.5 A constant current and temperature controlled at 70°C.

Far-field patterns are also measured at the different currents as shown in Fig. 2b. The divergence angle is below 20° for all injection currents, and the intensity maximum is on the symmetry axis. Owing to the circularly symmetric far-field patterns with low beam divergence angle, the beam of the device can be easily focused or collimated into a fibre in a simple butt-coupling arrangement.

Reliability is also an important issue. Fig. 3 shows the life test of output power measured from a randomly-picked VCSEL. During test, the device is driven by a 1.5 A constant current (I = 2Ith), and the temperature is controlled at 70°C. At the beginning, the optical
output power is about 0.35 W. Our preliminary result shows that the total degradation of output power is less than 10% after 500 h burn-in test. This life test is still undergoing.

Conclusion: We have reported a high-power InGaAs/GaAsP VCSEL with 430 μm diameter. The device produces room temperature CW maximum optical output power 1.52 W, corresponding to a power density 1 kW/cm², at 987.6 nm. The far-field divergence is below 20°. The initial reliability test at 70°C shows that the total degradation of output power is less than 10% after 500 h. These preliminary results predict strongly the potential of the large aperture VCSEL as high-power, surface emitting, and practical laser sources.

Acknowledgments: This work is supported by the Academic Excellence programme of CIOMP, Chinese Academy of Sciences and by the National Science Fund Council of the People’s Republic of China under Contract No. 10104016, 60306004.

© IEE 2004 4 May 2004

C. Yan, Y. Ning, L. Qin, L. Liu, L. Zhao, Q. Wang, Z. Jin, Y. Sun, G. Tao, G. Chu, C. Wang and L. Wang (Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People’s Republic of China)

H. Jiang (National Key Laboratory of High-Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, People’s Republic of China).

C. Yan: Also with National Key Laboratory of High-Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, People’s Republic of China.

References

